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1. PROJECT OVERVIEW

The common thread throughout this project is support for creation and management of
sensitive credentials and policy content for use in attribute-based access control (ABAC).
ABAC seeks to overcome problems of flexibility and scalability in access control
systems for dynamic coalitions, such as multilateral military and humanitarian
operations, as well as business partnerships and consortia. When resources are shared
today, unfortunately many coalitions find themselves with no better alternative than to
establish a virtual private network (VPN) and make shared resources available to one
another through the VPN. This means that users that have access to any of the shared
resources have access to all of them, which is inappropriately course granularity of access
control. However, existing alternatives, which are based on the identity or capabilities of
the resource requestor (including such generalizations as role-based access control)
require foreign requestors to be known to the resource-providing organization before
access can be authorized. The concomitant administrative overhead makes these systems
non-scalable. (Imagine having to keep track of staffing changes in every foreign
organization, or even having to issue an explicit capability for each foreign resource each
new hire or promotion might require access to.)

Authority in coalitions is inherently distributed. ABAC provides a means for each locus
of authority to determine and to specify its own judgements, and for those judgements to
be combined naturally to arrive at appropriate authorization decisions. The approach is
based on the use of digitally signed attribute credentials through which credential issuers
assert their judgements about the attributes of entities, such as users and organizations.
Because these credentials are digitally signed, they can serve to introduce strangers to
one another. Moreover, the issuers of credentials can be strangers whose authority is
determined based on their own attributes, as documented in further credentials. This is
one of the keys to ABAC’s scalability. A resource requester can be introduced to an
access mediator by a chain of credentials. Such a chain starts with a credential issued by
an authority known to and trusted by the access mediator, and ends with a credential
issued to the requestor. Each credential in the chain is issued by an appropriate authority
(for instance, the manager responsible for a staffing change decision), and the authority
of that issuer over the judgement in question is in turn based on her attributes (for
instance, the manager in question heads up the purchasing department).

Clearly, one of the key issues that ABAC must address is the choice of an appropriate
language design. The language is at the core of an ABAC system. It determines the kinds
of judgements that can be issued in credentials (e.g., “purchasing agents have spending
limits of $5,000” or “Alice is a purchasing agent”). Furthermore, its semantics
determines how the judgements contained in credentials issued by distributed authorities
combine to decide authorization questions.



Another key issue is that the data contained in credentials is often sensitive and must be
protected. This is central, since it means that the credentials that must be presented to
obtain access are themselves subject to access control. Because we are interested in
supporting coalitions of organizations that have only limited mutual trust, we believe that
the requester and the access mediator will often be unable to agree upon a trusted third-
party authorization service. Indeed, it seems debatable whether most individuals—much
less pairs of individuals—would be willing to trust any one entity with all of their
credentials.

In light of the fact that introducing third parties seems to make the problem harder rather
than simpler, the approach we take to managing credential sensitivity calls for requestor
and access mediator to enter into a kind of bilateral credential exchange, which we call a
trust negotiation (TN). Prior to entering into TN, both entities associate ABAC policies
with each of their sensitive credentials. Then when a resource is requested, a TN is
conducted to determine whether the access mediator is able to establish sufficient trust in
the requestor to grant access. (The requestor may also need to establish trust in the
access mediator—a point that we ignore for the moment and return to in the next
section.) The negotiation consists of a sequence of credential exchanges that begins by
disclosing credentials that are not sensitive. As credentials flow, more are unlocked, until
either the policy of the desired resource is satisfied, or the negotiation fails. Many
negotiation strategies are possible. Most exchange some form of credential requests,
which are derived from the policies governing either other requested credentials or the
target resource. Such requests serve to focus the exchange on credentials that are
relevant to unlocking the target resource. However, transmitting credential requests
raises other issues. For instance, doing so can inadvertently and without authorization
provide information about which credentials the transmitter possesses. On-going strategy
design work seeks to identify and avoid these potential pitfalls. In addition to needing
high quality negotiation strategies, we also need negotiation protocols that can
accommodate negotiators that use different strategies.

A final issue is how to collect credentials that are issued and stored in a distributed
manner when authorization decisions need to be made. Again because we are interested
in supporting coalitions of organizations that have no shared infrastructure and only
limited mutual trust, we believe it is unrealistic to require a centralized credential
repository.

1.1. Project Organization

This project has comprised in a single vehicle three independent lines of research by
teams at NAI Labs, Brigham Young University (BYU), and the University of Illinois at
Urbana-Champaign (UIUC). Each team has advanced the emerging technology of TN.
At NAI, we are delivering contributions in the following areas:

1. Distributed credential discovery (algorithms and a credential type system that allows
some credentials to be stored with their issuer and some with their subject, while



ensuring credentials can be found to answer authorization questions—this work was
done in collaboration with a group at Stanford University operating under a separate
DARPA-funded project, SPAWAR N66001-00-C-8015);

2. Policy language design (requirements, as well as identifying a candidate language);
and

3. Negotiation strategy (analysis of high-bandwidth covert channels enabling
unauthorized access to credential content).

BYU is delivering an analysis and proposed approach to enable resource requestors
(clients) to establish trust they need before making a sensitive resource request. This is
complimentary to the scenario we discussed above, where the goal of a trust negotiation
was to establish trust on the part of the access mediator in the requestor sufficient to
satisfy the resource’s access-control policy. BYU is also delivering a preliminary draft of
a paper about trust negotiation protocols that enable the two parties to negotiate

according to different strategies. That work was done in collaboration with UTUC.

Two later versions of the trust negotiation protocols paper are being delivered by UITUC.
(Although the BYU group also collaborated on these later drafts, its participation was not
funded through the current project.)

The work at NAI Labs has been and continues to be informed and influenced by the work
of the subcontractors. However, the subcontractors have conducted their work
independently, in a manner reflecting their own views and priorities. The research
performed under this project represents partial results and is continuing under separate
DARPA-funded follow-on efforts lead by NAI Labs and by BYU.

1.2. Report Organization

Like the project, this report has many parts. The final reports of the subcontractors, as
well as several technical reports and publications, are included as attachments. This
cover report presents an overview of the work done at NAI Labs. It outlines delivered
contributions, and discusses lessons learned and the relationship of work done under the
current project to continuing research under the follow-on project. The main body the
NAI Labs report begins on page 5.

Attachments 1 and 2 present in greater technical detail the findings of the NAI Labs
portion of the project. Attachments 3 and 4 are the final reports of the subcontractors at
BYU and UIUC, respectively, which introduce their own project contributions and
findings. They introduce Attachments 5 through 8, which are papers written by the
subcontractors under the current project.



1.2.1. List of Appendices

Appendix A. “Distributed Credential Chain Discovery in Trust Management,” Ninghui
Li, William H. Winsborough, and John C. Mitchell. To appear in: Eighth ACM Computer
and Communications Security Conference, November, 2001,

Appendix B. “Making Trust Negotiation Realistic: A Suitable Policy Language and the
Management of Information about Credential Possession,” William H. Winsborough and
Deborah Shands. NAI Labs Technical Report 01-113.

Appendix C. “Advances in Trust Negotiation.” Final report of the Brigham Young
subcontract. Kent E. Seamons, PI.

Appendix D. “Advances in Trust Negotiation.” Final report of the University of Illinois
subcontract. Marianne Winslett, PI.

Appendix E. “TrustBuilder: Middleware to Enable Trust Negotiation Strategy
Interoperability,” Kent Seamons, Marianne Winslett, and Ting Yu. Unpublished report.

Appendix F. “Interoperable Strategies in Automated Trust Negotiation,” T. Yu, M.
Winslett, and K. E. Seamons. Accepted submission to the Eighth ACM Computer and
Communications Security Conference to be held in Philadelphia in November, 2001. (20
pages)

Appendix G. Extended version of : “Interoperable Strategies in Automated Trust
Negotiation,” T. Yu, M. Winslett, and K. E. Seamons. Unpublished report. (28 pages)



2. RESEARCH PERFORMED AT NAI LABS

The long-term goal of this research is to develop attribute-based access control
mechanisms that provide acceptable scalability and flexibility to dynamic coalitions
operating in very large, open networks. NAI Labs is delivering contributions to the
solution of two fundamental problems in this area. These are the problems of collecting
distributed credentials that prove authorization and of protecting sensitive credential
content. By dividing these two difficult problems, we have been able to make significant
progress on each of them. In future work, we plan to apply our improved understanding
and technique suite to solve the two problems simultaneously. We introduce each of the
fundamental problems briefly in this introduction, and then present our contributions to
each area in greater detail below, each in its own section.

Today trust negotiation strategies presume that every credential used during a negotiation
is held by one participant or the other prior to commencing the negotiation. Yet it is not
until negotiation is underway that participants really know which credentials are needed.
By its nature, ABAC requires the use of credentials issued to third parties. This is
inherent because one of the keys to ABAC’s flexibility is that it identifies suitable
credential issuers by their attributes. Issuer attributes are documented in those third-party
credentials, which we call supporting credentials.

Currently, if a negotiation participant does not have a needed supporting credential, it has
to break off the negotiation and obtain it out of band. No mechanism for supporting that
credential collection has yet been devised. The first fundamental problem NAI Labs is
working on is how to integrate and guide the collection of distributed credentials during
trust negotiation. We have begun to address the problem by solving a simpler one. Recall
from the project overview above that positive authorization decisions are made by
finding appropriate credential chains. Ignoring for the time being issues created by
credential sensitivity, we have developed automated techniques for collecting credentials
that are issued and stored in a distributed manner. These collection techniques are guided
by the simultaneous assembly those credential chains. We call this problem distributed
credential chain discovery. As we discuss further below, in this area we have completed
significant advances that will soon be published in a prominent technical conference.

While our approach to the first problem was to begin by neglecting credential sensitivity,
protecting sensitive credentials is the focus of the second fundamental problem that NAI
Labs is currently solving. Protecting the contents of credentials from unauthorized
disclosure is the basic motivation for trust negotiation. However, most negotiation
strategies proposed to date are ineffective in this regard. A concomitant issue is that most
prior strategies do not use a realistic policy language. Without an appropriate policy
language, the flexibility and scalability of ABAC cannot be achieved. Unfortunately,
using a realistic language makes strategy design significantly harder. Nonetheless, it
seems fruitless at this stage to design any more negotiation strategies that knowingly fail



to protect credential content or that use unrealistic or toy policy languages. We believe
that these problems must be solved simultaneously to have any impact.

Our deliverable regarding this problem is Attachment 2. It presents a snapshot of our
work on the two issues of credential protection and language design. It analyzes policy
language requirements and examines how negotiators can tell each other their policies for
disclosing credentials requested of them without admitting whether they do or do not
have the requested credentials. The latter examination is incomplete; our efforts in this
area are ongoing under a follow-on DARPA-funded project (SPAWAR N66001-01-C-
8005). New difficulties in effectively protecting credential content have continued to
emerge since Attachment 2 was written. Some of these late-breaking developments are
outlined in our Information Flow discussion below.

The remainder of this report frames contributions to these fundamental problems that
NAI Labs is delivering in Attachments 1 and 2.

2.1. Distributed Credential Chain Discovery

Previous trust negotiation research makes the simplifying assumption that, when
negotiation begins, the two participants already hold all the credentials that will be used.
If one of the participants needs to obtain additional credentials, he must do so outside the
context of the negotiation and no support is provided.

For many credentials issued to one of the negotiators, it is reasonable to assume that the
negotiator holds a copy. However, as discussed above, supporting credentials, issued to
others, will be needed frequently. (Again, this is because part of the flexibility of
attribute-based access control derives from the ability to delegate issuing authority to
strangers based on the issuer’s attributes.) Like credentials issued to the negotiator
herself, supporting credentials are presented during trust negotiation so that a complete
credential chain can be verified.

Required supporting credentials are identified by the opponent’s policy. (The “opponent”
is the other negotiator. The relationship resembles that of the forefinger and the
“opposable” thumb, and is not normally adversarial.) For negotiators that have no
knowledge of one another’s policies, it could be very difficult to anticipate before the
negotiation which supporting credentials they will need to present to one another.
Negotiators know which supporting credentials are relevant only after they begin
receiving requests for credentials from the opponent. In principle, if they don’t have a
copy of a necessary credential, they can deal with this by suspending negotiation, and
then resuming it after they have collected the necessary credentials. However, they
receive no support for integrating the construction of the credential chain that satisfies a
policy with the collection of the credentials that compose the chain.

Setting aside for the time being the problem that the issuers and subjects of supporting
credentials may consider those credentials sensitive, we have concentrated in this work
on the fact that distributed discovery requires an evaluation procedure that can drive



credential collection. Such a procedure must be goal-oriented in the sense of expending
effort only on chains that involve the requester and the access mediator, or its trusted
authorities. In very large networks, with distributed storage of thousands or millions of
credentials, most of them unrelated to one another, goal-oriented techniques will be
crucial. The procedure must also be able to suspend evaluation, issue a request for
credentials that could extend partial chains, and then resume evaluation when additional
credentials are obtained.

Attachment 1 delivers formally verified and analyzed goal-oriented evaluation algorithms
based on a graphical representation of credentials. This graphical representation is ideal
for driving credential collection because it makes it easy to suspend and resume
evaluation, and to schedule work flexibly. The graph-based evaluation model, presented
in Section 3.2, provides a natural structure for organizing the construction of credential
chains, while interleaving distributed collection, guided by the chain construction. Very
loosely, chains correspond to paths and entities correspond to nodes in this graph.
Algorithms, presented in Sections 3.3, 3.4, and 3.5, find chains with worst-case efficiency
as good as any known algorithm. Moreover, in the expected case where there are a lot of
unrelated credentials, the algorithms avoid wasting time considering them. Thus, even in
the centralized case, our goal-oriented algorithms represent a technical contribution.

In addition to the evaluation model and algorithms, Attachment 1 delivers a system for
organizing the distributed storage of credentials in a manner that ensures they can be
located by trust negotiators. We assume that in general, to find a credential, you need to
know the issuer or the subject. We say an entity (subject or issuer) stores the credential if,
knowing the entity, you can get the credential, even if it is actually stored by a third

party.

Among prior techniques for distributed chain discovery, some store credentials with their
issuers and others store credentials with their subjects. Making either assumption, we
can find the credentials of a chain by collecting credentials from each successive entity in
the chain. In the case where credentials are stored with issuers, we start by collecting
credentials from the known, trusted authorities identified by the policy, and work toward
the requestor. In the case where credentials are stored with their subjects, we start by
collecting from the requestor, and work down the chain in the other direction. The
problem with these two approaches is that they are each too restrictive: some credentials
should be stored with issuers and some, with subjects. For instances, some credentials
may need to be updated frequently, or may be of no interest to the subject. If a business
issues a credential to a university that entitles students of that university to special
service, the university may not be interested in assisting the arrangement. Conversely,
many issuers of large numbers of credentials would become bottlenecks if required to
store and make available the credentials they issue. In our example, if a student seeking a
special service can provide her own student 1D, the university need not actively
participate.



Attachment 1 presents a novel way to ensure it is possible to find all credentials relevant
to a given authorization decision while allowing some credentials to be stored with their
subjects and some with their issuers. It introduces a type system for credentials that
introduces significant flexibility in the location of credential storage. Roughly speaking,
if credentials are well typed, you can find chains by starting at both ends and working
toward the middle. Section 4 introduces the type system and proves that is ensures
relevant credentials can be found when needed to support authorization decisions.
Section 4.4 presents suggestions for making typing, as well as natural language
descriptions of attribute meanings, accessible and uniform by using a technique similar to
XML namespaces.

Finally, Section 2 of Attachment 1 presents a new credential and policy language that
may in future work lead us to revise our language choice, which we discuss in attachment
2. We return to this issue in the next section.

2.1.1. Lessons Learned and Future Work in Distributed Credential
Discovery

Section 5.2 shows that credential chain discovery for our language is log-space P-
complete. Unfortunately, this means that in the worst case, the problem is probably not
amenable to speedup through parallelization. In effect, this means that showing that some
policies are satisfied will probably always be an expensive proposition. The expectation
is that, while it may be difficult to exclude such policies from a sufficiently expressive
language, the policies that occur naturally will be unlikely to require excessive evaluation
effort.

As mentioned above, the work presented in Attachment 1 ignores the problem of
credential sensitivity, which is the motivation for performing trust negotiation as part of
attribute-based access control. Integrating management of credential sensitivity and
distributed credential discovery remains a matter for future work.

2.2. Trust Negotiation: Analyzing Language Requirements and
Information Flow

Attachment 2 presents partial results of our on-going efforts to design a realistic trust
negotiation strategy. It focuses on two issues. The first is the design or adaptation of a
suitable policy and credential language. Section 4.1 of the attachment critiques policy
languages used in prior trust negotiation strategies and shows why each fails to meet key
policy language requirements, which are also presented. Section 4.2 discusses the
suitability of Delegation Logic, which we tentatively selected for use in future strategy
design. As seen in Section 2 of Attachment 1, we have recently become involved in on-
going work lead by researchers at Stanford University that may yield an even better
language for our purpose. That work seeks, among other things, to simplify the
somewhat difficult notation of DL by incorporating SDSI-like notations. It also seeks to
develop evaluation models that better support the interleaving of credential collection



with proof construction. The language used in attachment 1 does not, however, allow
attributes to have fields (i.e., parameters), such as age or credit limit. For this reason, at
present, the most suitable existing language for trust negotiation that we know of remains
Delegation Logic.

The second issue concerns the management of credential-content information flow. The
goal of this line of work is to create strategies in which negotiators respond to requests
for credentials in a way that does not disclose which credentials they have before the
requestor has demonstrated that they are authorized to receive that information. By this
criterion, all previous negotiation strategies have failed, with the exception of the eager
strategy, which has other problems (too many irrelevant credentials flow). Correcting
this problem is a central, on-going goal of this research.

Our basic technique for controlling information about the contents of credentials a
negotiator possesses is to enforce policies that govern acknowledging possession or non-
possession of sensitive credentials. (Sometimes having a credential is sensitive;
sometimes not having one is sensitive.) We call these policies acknowledgement
policies, in contrast to access-control policies, which also must be satisfied before a
credential is transmitted. The idea is that once the appropriate acknowledgement policies
have been satisfied, the access control policies of individual credentials can flow, which
implicitly acknowledges possession of the requested credentials. Acknowledgement
policies are transmitted even when the requested credentials are not held, so their
transmission does not indicate possession of any credentials.

We assume that every credential has a credential type, such as “drivers license” or “letter
of credit,” which identifies the variety of credential it is. Credentials may also have data
fields containing values, which could be sensitive, such as age or credit limit.

In preliminary design work described in Section 3.3 of Attachment 2, we noted the
importance of a negotiator always responding to a request for credentials of type p in the
same way, no matter how many (zero or more) credentials he has of that type. In
particular, we observed that the number and content of policies transmitted in the initial
response to a request (the acknowledgement policies) should not depend on the
credentials the transmitter actually holds. Thus, we proposed associating an
acknowledgement policy with each credential type. When a request for credentials of a
given type is received, the acknowledgement policy is transmitted. Once that policy is
satisfied, the negotiator either discloses that he has no credentials of that type, or
transmits access control policies for each credential he has of the type.

Section 5 of Attachment 2 presents an abstract analysis aimed at either justifying or
finding fault with this design. As far as it goes, it seems to justify several of our design
choices. However, additional issues not discussed there have surfaced concerning the
management of credential-content information flow. We have identified two additional
refinements that should be made before completing a formal design specification. First,
we want to make use of constraints on credential contents in credential requests to reduce



the number of unnecessary credentials and policies that flow, and thereby to make trust
negotiation more efficient. Second, and more critically, we need'to ensure that
acknowledgement of credential possession occurs at a sufficiently fine granularity to
avoid forcing inappropriate compromises between confidentiality and availability. Both
of these refinements lead to a need for acknowledgement policies that depend on
credential field values, as well as on the credential type.

Although we have begun to work out a design along these lines, we came to appreciate
the importance of these refinements too late to be able to develop a design specification
based on them during the current project. However, we believe that coming to appreciate
their importance has been a significant advance, which will lead to the development of a
family of high-quality designs as part of the follow-on project. The remainder of this
section explains why these refinements now appear to be so important. ‘

When a transmitted policy is received by a negotiator, it is taken as a request for
credentials that satisfy the policy. If credential requests constrain the field values in the
requested credentials, then when a negotiator’s behavior discloses, implicitly or
explicitly, that a request cannot be satisfied, contents of available credentials can be
inferred based on the values specified in the request. Acknowledgement policies based
on credential type can be used to ensure that these disclosures are only made to
appropriate opponents, since any reasonable negotiation strategy will acknowledge
request unsatisfiability only after the acknowledgement policy is satisfied. However,
relying on the same acknowledgement policy to control acknowledgement of all
credentials of a given type, no matter what values they contain, leads to a coarse-grained
system of control. It means that credentials containing very sensitive values and
credentials containing values that are not sensitive at all must be governed by the same
acknowledgement policy, just because they have the same credential type. The result is
either that the content of the sensitive credential is inadequately protected, or that the
non-sensitive credential is less available than it should be, making negotiation success
less common than it should reasonably be.

One quick fix to this problem would be to require that credential types be different
whenever sensitivity levels are different. However, it would artificially force the
credential type to contain information that is more naturally carried in one of the
credential’s fields. For instance, consider a simple membership credential. There will
already be a field containing the credential’s issuer, and the namespace would be
needlessly cluttered if required to encode the issuer in the type. Yet the degree of
sensitivity associated with a membership certainly depends on the issuing organization.
In another example, a letter of credit of ten million dollars is likely to have a very
different degree of sensitivity than one of ten thousand. Yet to require a distinction
among the types of these credentials would be arbitrary and unenforceable.

It should also be noted that this granularity problem is not solely a consequence of the
design decision that credential requests should be allowed to constrain credential
contents. We now argue that when access control policies flow, they may disclose
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credential contents as well. The implication is that, independent of constraints in
requests, relying on the same acknowledgement policy to control acknowledgement of all
credentials of a given type, no matter what values they contain, once again leads to an
unacceptably coarse-grained system of control.

To see that access control policies can disclose contents, consider the following. It is
reasonable to assume that credential access control policies used for the same credential
by different negotiators will often be similar, perhaps even standardized. In particular,
even among credentials of the same type, these standardized policies may often differ
according to the values of parameters. For instance, a letter of credit of ten million
dollars is likely to have a very different access control policy than one of ten thousand.
Thus, when the access control policy flows, its recipient can infer something about the
size of the credit line. Once again, if the same acknowledgement policy is used for all
letter-of-credit credentials, then either the information that the negotiator has a ten
million dollar line of credit is inadequately protected, or the smaller letter is governed
unnecessarily strictly, occasionally even needlessly preventing successful negotiation.

We are currently designing a negotiation strategy in which acknowledgement of different
field values is governed differentially. Part of the problem is that a negotiator can’t send
a separate acknowledgement policy for each of his credentials without disclosing how
many credentials he has, or without hinting at the values of those credentials. We get
around this hazard by allowing each negotiator to establish a separate acknowledgement
policy for each field value within each credential type, as well as for the credential type
itself. The design requires a default value policy to be associated with each field, and
then allows special values to be given special policies. Note that these values should
have no correlation with the values of credentials the negotiator actually holds.

(While a negotiator clearly cannot generate policies for all field values for all credential
types, it is in the negotiator’s interest to provide policies for values and types whose
possession or non-possession would be sensitive, even when he doesn’t have (or,
respectively, does have) that credential. This is because treating information as sensitive
when you actually have nothing to hide reduces the information content of treating
something as sensitive. We anticipate credential issuers publishing suggested
acknowledgement policies that negotiators can use, whether they have the credentials or
not, thereby making it easy for individuals to respond uniformly whether or not they have
the credential.)

When a request for credentials arrives, the relevant field value acknowledgement policies
all flow. As acknowledgement policies for field values occurring in particular credentials
are satisfied, the access control policies for those credentials can flow. In this way, the
policies transmitted when a request arrives don’t reveal which credentials are actually
held, yet the acknowledgement policies that are enforced are appropriate to each
individual credential, yielding the desired fine-grained control.

11



2.2.1. Lessons Learned and Future Work in Information Flow

Our original plan was to develop algorithms supporting the parsimonious negotiation
strategy. (See Section 2.2.2 of Attachment 2 for a summary of this strategy.) As we
began to study information flow in this strategy, however, we realized that the
parsimonious strategy would probably never be acceptable to would-be adopters. The
problems with information flow in this strategy are presented in Section 3.2 of
Attachment 2. In light of this realization, we dropped further work on the parsimonious
strategy from our plan and focused instead on design requirements and principles for
better managing information flow in trust negotiation.

Our experience with this design problem has illustrated the general difficulty of
managing covert channels. It is generally acknowledged that efforts to eliminate all
covert channels in access control systems are unlikely to succeed. Yet covert channels
that are sufficiently high-bandwidth demand attention. In our work, for instance, many
prior negotiation strategies were entirely unsuccessful in, or even made no effort aimed
at, preventing the opponent determining exactly which credentials a negotiator holds. By
comparison, the issues discussed above are much more subtle.

We have avoided expending effort on issues that seem unlikely to be central to trust
negotiation’s viability as a technology. For instance, we have no plans at this time to
support special field value acknowledgement policies for combinations of field values.
The acknowledgement policy for a combination of field values will just be the
conjunction of acknowledgement policies for the individual field values. If stronger
combination policies turn out to be important in practice, they can be added later.

Potential covert channels have sometimes not been immediately evident. Unfortunately,
it took us several months to notice that the content of the access control policy itself
could reveal important sensitive features of the credential it governs.

The reader of Attachment 2 Section 5 will see that organizing the principles that underlie
a successful design is not a simple matter. This probably is why prior strategies, as well
as several of our own early attempts, were unsuccessful.

Although we have performed substantial analysis in this area and developed several
design principles that seem solid, we will not complete this design under the current
contract, as insufficient time and funding remain. However, this work continues,
uninterrupted, under the DARPA-funded follow-on contract (SPAWAR N66001-01-C-
8005), and we expect to have a completed design this Fall.

2.3. Conclusions

In this preliminary study, we have taken several important steps toward meeting our
long-term goal of developing access control systems that are highly scalable, yet fine-
grained, making them suitable for the demands of dynamic coalitions. In the area of
distributed credential discovery, we have provided algorithms and a credential type
system that allow some credentials to be stored with their issuer and some with their
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subject, while ensuring that credentials can be located as needed to answer authorization
questions. In the area of policy language design, we have identified basic requirements
for ABAC policy languages. We found that none of the policy languages used in existing
trust negotiation strategies meet these requirements, and we identified Delegation Logic
(DL) as a candidate language that meets our basic requirements. In our work toward
designing a realistic negotiation strategy, we have analyzed existing strategies from the
point of view of whether they successfully control access to credential content and
information about which credentials a negotiator holds. The important ones all have high-
bandwidth covert channels that enable unauthorized access to credential content. We
have developed design principles that seem to close the covert channels we have
identified and we are in the process of organizing a design specification. Our work in
these and other fundamental ABAC technologies continues uninterrupted in a DARPA-
funded follow-on project.
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ABSTRACT

We give goal-oriented algorithms for discovering credential
chains in RTy, a role-based trust-management language in-
troduced in this paper. The algorithms search credential
graphs, a representation of RTy credentials. We prove that
evaluation based on reachability in credential graphs is sound
and complete with respect to the set-theoretic semantics
of RTy. RITy is more expressive than SDSI 2.0, so our
algorithms can perform chain discovery in SDSI 2.0, for
which existing algorithms in the literature either are not
goal-oriented or require using specialized logic-programming
inferencing engines. Being goal-oriented enables our algo-
rithms to be used when credential storage is distributed. We
introduce a type system for credential storage that guaran-
tees well-typed, distributed credential chains can be discov-
ered.

1. INTRODUCTION

Several trust-management systems have been proposed
in recent years, e.g., SPKI/SDSI [10], PolicyMaker (3, 4],
KeyNote [2], Delegation Logic [15]. These systems are based
on the notion of delegation, whereby one entity gives some
of its authority to other entities. The process of making
access control decisions involves finding a delegation chain
from the source of authority to the requester. Thus, a cen-
tral problem in trust management is to determine whether
such a chain exists and, if so, to find it. We call this the cre-
dential chain discovery problem, by contrast with the certifi-
cate chain discovery problem, which is concerned with X.509
certificates [9]. Credentials in trust management generally
have more complex meanings than simply binding names to
public keys, and a credential chain is often a graph, rather
than a linear path. The goal of this paper is to address the
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credential chain discovery problem (the discovery problem
for short) in such systems.

Almost all existing work addressing the discovery problem
assumes that potentially relevant credentials are all gath-
ered in one place. This is at odds with the tenet of trust
management—decentralized control; systems that use trust
management typically issue and often store credentials in a
distributed manner. This raises some nontrivial questions.

EXAMPLE 1. A fictitious Web publishing service, EPub,
offers a discount to preferred customers of its parent orga-
nization, EOrg. EOrg issues a credential to the ACM stat-
ing that ACM members are preferred customers. Combin-
ing it with Alice’s ACM membership credential yields a two-
credential chain that proves Alice is a preferred customer.
This is a linear chain; the subject of the credential issued by
EOrg, ACM, is the issuer of the credential issued to Alice.

These two credentials must be collected to construct the
chain. The question we take up is where they should be
stored to enable that collection. We say an entity A stores
a credential if we can find the credential once we know A.
Some other entity, such as a directory, may actually house
the credential on A’s behalf. Also, by storing a credential,
we mean storing and providing access to the credential.

Given this definition of storing, to be useful, a credential
must be stored with its issuer or with its subject. If both
credentials in example 1 are stored with their subject, we
can find them by obtaining the first credential from Alice,
and using the issuer of that credential, ACM, to obtain the
second. A disadvantage of this strategy is that it requires the
ACM to store all the credentials authorizing ACM members.
This makes the ACM a bottleneck. Also, some issuers may
not entrust credentials to their subjects. If instead both
credentials are stored with their issuers, the ACM has to
store and provide all membership ids, again making it a
bottle neck, and potentially causing broad search fan-out.

In the example, the ideal arrangement is to store one cre-
dential with EOrg and the other with Alice. The chain can
then be discovered by working from these two ends towards
the chain’s middle. No prior credential discovery system
supports this, probably because subject- and issuer-storage
cannot be intermixed arbitrarily: in our example, if both
credentials are stored exclusively by the ACM, the chain
cannot be found. This is because in many decentralized
systems, it is impossible or prohibitively expensive for one
entity to enumerate all other entities in the systems. For
all practical purposes, in such a system, if one can’t find a



credential chain without contacting every entity, one can’t
find it at all. In this paper, we introduce a credential typing
system that constrains storage enough to ensure chains can
be found by starting at their two ends and working inward.
The credential chain introduced in example 1 illustrates
only the simplest case that we address. Some trust man-
agement systems, such as SDSI and Delegation Logic, allow
what we call attribute-based delegation, that is the delegation
of attribute authority to entities having certain attributes.

ExXaMPLE 2. EPub offers another discount to university
students, and delegates the authority over the identification
of students to entities that are accredited universities.

Attribute-based delegation is achieved in SDSI through
linked names, and in Delegation Logic through dynamic
threshold structures and through conditional delegations.
Systems that support attribute-based delegation promise
high flexibility and scalability. However they significantly
complicate the structure and discovery of credential chains.

Beyond storing credentials where they can be found, dis-
tributed discovery also requires an evaluation procedure that
can drive credential collection. Such a procedure must be
goal-oriented in the sense of expending effort only on chains
that involve the requester and the access mediator, or its
trusted authorities. In the Internet, with distributed stor-
age of millions of credentials, most of them unrelated to one
another, goal-oriented techniques will be crucial. The proce-
dure must also be able to suspend evaluation, issue a request
for credentials that could extend partial chains, and then
resume evaluation when additional credentials are obtained.
Existing evaluation procedures for SDSI and for Delegation
Logic are either not goal-oriented, or do not support this
alternation between collection and evaluation steps.

As a concrete foundation for discussing the discovery prob-
lem, we introduce a trust-management language, RTp, which
supports attribute-based delegation and subsumes SDSI 2.0
(the “SDSI” part of SPKI/SDSI 2.0 [10]). We provide goal-
oriented evaluation algorithms based on a graphical repre-
sentation of RTy credentials. This representation is ideal for
driving credential collection because it makes it easy to sus-
pend and resume, and to schedule work flexibly. Even in the
centralized case, goal-orientation is an advantage when the
credential pool is very large and contains many credentials
that are unrelated. We also show how to use our algorithms
to perform goal-oriented chain discovery for SDSI 2.0.

The rest of this paper is organized as follows. In sec-
tion 2, we present the syntax and a set-theoretic semantics
for RTy. In section 3, we present goal-oriented, graph-based
algorithms for centralized chain discovery in RTy, and show
how to apply them to SDSI as well. We prove that the graph-
based notion of credential chains is sound and complete with
respect to the semantics for RTp. In section 4, we study
chain discovery in the distributed case. We present a notion
of well-typed credentials and prove that chains of well-typed
credentials can always be discovered. In section 5, we dis-
cuss future directions and some related work. We conclude
in section 6.

2. AROLE-BASED TRUST-MANAGEMENT
LANGUAGE

This section introduces RTp, the first (and the simplest)
in a series of role-based trust-management languages we are
developing. We present RIu’s syntax, discuss its intended
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meaning, and compare it to SDSI. Then we give a formal
semantics.

2.1 The Language RT,

The constructs of RT, include entities, role names, and
roles. Typically, an entity is a public key, but could also be,
say, a user account. Entities can issue credentials and make
requests. RTy requires that each entity can be uniquely
identified and that one can determine which entity issued a
particular credential or a request. In this paper, we use A,
B, and D to denote entities. A role name is an identifier,
say, a string. We use 7, 71, 72, etc., to denote role names.
A role takes the form of an entity followed by a role name,
separated by a dot, e.g., A.r and B.r;. The notion of roles
is central in RTp. A role has a value that is a set of enti-
ties who are members of this role. Each entity A has the
authority to define who are the members of each role of the
form A.r. A role can also be viewed as an attribute. An en-
tity is a member of a role if and only if it has the attribute
identified by the role. In RTj, an access control permission
is represented as a role as well. For example, the permis-
sion to shut down a computer can be represented by a role
OS.shutdown.

There are four kinds of credentials in RT,, each corre-
sponding to a different way of defining role membership:

° Type-1: Are—B
A and B are (possibly the same) entities, and r is a
role name.

This means that A defines B to be a member of A's r
role. In the attribute-based view, this credential can
be read as B has the attribute A.r, or equivalently, A
says that B has the attribute 7.

Ar+—B.r

A and B are (possibly the same) entities, and r and
r1 are (possibly the same) role names.

. Type-2:

This means that A defines its r role to include all
members of B’s r; role. In other words, A defines the
role B.ry to be more powerful than A.r, in the sense
that a member of B.r; can do anything that the role
A.r is authorized to do. Such credentials can be used
to define role-hierarchy in Role-Based Access Control
(RBAC) [16]. The attribute-based reading of this cre-
dential is: if B says that an entity has the attribute ry,
then A says that it has the attribute ». In particular,
if r and rq are the same, this is a delegation from 4 to
B of authority over r.

. Type-3: Are—Ariry

A is an entity, and 7, r1, and r; are role names., We
call A.ry.r2 a linked role.

This means that members(A.r) D members(A.ry.rz) =
UBemembers(A.rl) members(B.re), where members(e)
represents the set of entities that are members of e.
The attribute-based reading of this credential is: if A
says that an entity B has the attribute 71, and B says
that an entity D has the attribute ro, then A says that
D has the attribute r. This is attribute-based delega-
tion: A identifies B as an authority on r2 not by using
(or knowing) B’s identity, but by another attribute of
B (viz., 71). If r and rp are the same, A is delegating



its authority over r to anyone that A believes to have
the attribute ;.

e Type-4: Arefinfon...Nfi

A is an entity, & is an integer greater than 1, and each

fi» 1 <3 <k, is an entity, a role, or a linked role
starting with A. We call fiNfaN- - -Nfi an intersection.

This means that members(A.r) D (members(fi)N---N
members(fi)). The attribute-based reading of this cre-
dential is: anyone who has all the attributes fy, ..., fx
also has the attribute A.7.

A role expression is an entity, a role, a linked role, or an
intersection. We use ¢, e1, e2, etc, to denote role expressions.
By contrast, we use fi, ..., fi to denote the intersection-free
expressions occurring in intersections. All credentials in RTp
take the form, A.r «—— e, where ¢ is a role expression. Such
a credential means that members(A.r) 2O members(e), as we
formalize in section 2.2 below. We say that this credential
defines the role A.r. (This choice of terminology is moti-
vated by analogy to name definitions in SDSI, as well as
to predicate definitions in logic programming.) We call A
the issuer, e the right-hand side, and each entity in base(e) a
subject of this credential, where base(e) is defined as follows:
base(A) = {A}, base(A.r) = {A}, base(A.r1.r3) = {4},
base(f1 M- N fr) = base(f1) U - -- U base(fx).

ExampLE 3. Combining examples 1 and 2, EPub offers
a special discount to anyone who is both a preferred cus-
tomer of EOrg and a student. To identify legitimate uni-
versities, EPub accepts accrediting credentials issued by the
fictitious Accrediting Board for Universities (ABU). The fol-
lowing credentials prove Alice is eligible for the special dis-
count:

EPub.spdiscount — EOrg.preferred N EPub.student,
EOrg.preferred — ACM.member,
ACM.member «—— Alice,

EPub.student — EPub.university.stulD,
EPub.university «— ABU .accredited,
ABU.accredited < StateU,
StateU.stulD «— Alice

Readers familiar with Simple Distributed Security Infras-
tructure (SDSI) [8, 10] may notice the similarity between
RT; and SDSI's name certificates. Indeed, our design is
heavily influenced by existing trust-management systems,
especially SDSI and Delegation Logic (DL) {15]. RTp can be
viewed as an extension to SDSI 2.0 or a syntactically sugared
version of a subset of DL. The arrows in RTo credentials are
the reverse direction of those in SPKI/SDSI. We choose to
use this direction to be consistent with an underlying logic
programming reading of credentials and with directed edges
in credential graphs, introduced below in section 3. In addi-
tion, RT; differs from SDSI 2.0 in the following two aspects.

First, SDSI allows arbitrarily long linked names, while
we allow only length-2 linked roles. There are a couple of
reasons for this design. We are not losing any expressive
power; one can always break up a long chain by introducing
additional roles and credentials. Moreover, it often makes
sense to break long chains up, as doing so creates more
modular policies. If A wants to use B.ry.rg.--- .rg in its
credential, then B.ri.ra.- - .ry—1 must mean something to
A; otherwise, why would A delegate power to members of
B.rire.- - 17 Having to create a new role makes A
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think about what B.ri.ry.--- rx_1 means. Finally, restrict-
ing lengths of linked roles simplifies the design of algorithms
for chain discovery.

Second, SDSI doesn’t have RTy’s type-4 credentials, and
so RTp is more expressive than the current version of SDSI
2.0. Intersections and threshold structures (e.g., those in
[10]) can be used to implement one another. Threshold
structures may appear in name certificates according to [10]
and earlier versions of [11]. This is disallowed in [8] and the
most up-to-date version of [11], because threshold structures
are viewed as too complex [8]. Intersections provide similar
functionality with simple and clear semantics.

2.2 The Semantics of RT,

This section presents a non-operational semantics of RT.
Given a set C of RTp credentials, we define a map Sc¢ :
Roles — p(Entities), where p(Entities) is the power set of
Entities. S¢ is given by the least solution to a system of
set inequalities that is parameterized by a finite, set-valued
function, rmem : Roles — gp(Entities). That is, the semantics
is the least such function that satisfies the system, where
the ordering is pointwise subset. We use a least fixpoint so
as to resolve circular role dependencies. To help construct
the system of inequalities, we extend rmem to arbitrary role
expressions (whose domain we denote by RoleExpressions)
through the use of an auxiliary semantic function, expr,mem :
RoleExpressions — p(Entities) defined as follows:

exprimem(B) = {B}
eXprimem(A.r) = rmem(A.r)
eXprimem(A.r1.72) = U rmem(B.ry)

Bermem(A.ry)

ﬂ €XPrymem (f7)

1<5<k

eXPlymem(f1 -+ N f&) =

We now define S¢ to be the least value of rmem satisfying
the following system of inequalities:

{ exprimem(€) C rmem(Ar)| Ar——eeC }.

As with rmem, we use expr to extend S¢ to role expressions,
writing exprg,_ (e) for the members of role expression e.

The least solution to such a system can be constructed
as the limit of a sequence {rmem;}.cn, where NV is the set
of natural numbers, and where for each 7, rmem; : Roles —
p(Entities). The sequence is defined inductively by taking
rmemg(A.r) = @ for each role A.r and by defining rmem;
so that for each role A.r,

rmem;11(A.r) = U

Are—ec€ C
The function that relates the values of {rmem; };cx is mono-
tonic, because the operators used to construct it (N and U)
are monotonic. Furthermore, Roles — p(Entities) is a com-
plete lattice. So this sequence is known to converge to the
function’s least fixpoint, which is clearly also the least solu-
tion to the inequalities. (As the lattice is finite, convergence
takes place finitely.) Thus, the least solution exists and is
easily constructed. For instance, referring to example 3 and
showing only changes in the function’s value, successive val-
ues of rmem; have: for ¢ = 1, ABU.accredited = {StateU},
StateU.stulD = {Alice}, ACM.member = {Alice}; for¢ = 2,
EPub.university = {StateU}, EOrg.preferred = {Alice}; for
¢ = 3, EPub.student = {Alice}; for ¢ = 4, EPub.spdiscount =
{Alice}, where they stabilize.

exPrrmemi (e) M



3. CENTRALIZED CHAIN DISCOVERY

Given a set of credentials C in RTy, three important kinds
of queries are:

1. Given a role A.r, determine its member set, Sc(A.r);

2. Given an entity D, determine all the roles it belongs
to, i.e., all role A.r’s such that D € S¢(A.r);

3. Given a role A.r and an entity D, determine whether
De Sc(A‘r).

In this section, we study credential chain discovery for
RTy when credentials are centralized. We give goal-oriented
algorithms for answering the above three kinds of queries.

3.1 Algorithm Requirements

Chain discovery in RT, shares two key problem charac-
teristics with discovery in SDSI: linked names give creden-
tial chains a non-linear structure and role definitions can be
cyclic. Cyclic dependencies must be managed to avoid non-
termination. Clarke et al. [8] have given an algorithm for
chain discovery in SPKI/SDSI 2.0. Their algorithm views
each certificate as a rewriting rule and views discovery as a
term-rewriting problem. It manages cyclic dependency by
using a bottom-up approach—it performs a closure opera-
tion over the set of all credentials before it finds one chain.
This may be suitable when large numbers of queries are
made about a slowly changing credential pool of modest
size. However, as the frequency of changes to the credential
pool (particularly deletions, such as credential expirations or
revocations) approaches the frequency of queries against the
pool, the efficiency of the bottom-up approach deteriorates
rapidly, particularly when pool size is large.

Li [14] gave a 4-rule logic program to calculate mean-
ings of SDSI credentials. Cyclic dependencies are managed
by using XSB [17] to evaluate the program. XSB's exten-
sion table mechanism avoids non-termination problems to
which other Prolog engines succumb. Yet, for many trust-
management applications, this solution is excessively heavy-
weight. Moreover, in its current form, the resulting evalua-
tion mechanism cannot be used to drive credential collection.

As discussed in section 1, because we seek techniques
that work well when the credential pool is distributed or
changes frequently, we require chain discovery algorithms
that are goal-directed and that can drive the collection pro-
cess, They also must support interleaving credential collec-
tion and chain construction (i.e., evaluation) steps.

We meet these requirements by providing graph-based
evaluation algorithms. Credentials are represented by edges.
Chain discovery is performed by starting at the node rep-
resenting the requester, or the node representing the role
(permission) to be proven, or both, and then traversing
paths in the graph trying to build an appropriate chain.
In addition to being goal-directed, this approach allows the
elaboration of the graph to be scheduled flexibly. Also, the
graphical representation of the evaluation state makes it rel-
atively straightforward to manage cyclic dependencies. To
our knowledge, our algorithms are the first to use a graphical
representation to handle linked roles.

3.2 A Graph Representation of Credentials

We define a directed graph, which we call a credential
graph, to represent a set of credentials and their meanings.
Each node in the graph represents a role expression occur-
ring in a credential in C. Every credential Ar — e € C
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contributes an edge e — A.r.* (This holds for credentials of
all types.) The destinations of these edges are roles. Edges
are also added whose destinations are linked roles and inter-
sections. We call these derived edges because their inclusion
come from the existence of other, semantically related, paths
in the graph.

DerFiniTION 1 (CREDENTIAL GRAPH). For a set of cre-
dentials C, the corresponding credential graph is given by
Ge = (Ne, E¢) where Ne and Ec¢ are defined as follows.

Ne = U {Are}.
Are—e € C
Ec¢ is the least set of edges over N¢ that satisfies the follow-
ing three closure properties:

Closure Property 1: If Ar—e &, thene— Ar € E¢.

Closure Property 2: If B.ra, Ary.ro € Ne and there is a
path B % A.rq in Ec, then B.ora — Aryre € Ec; we
say that this edge is derived from the path B = A.ry.

Closure Property 8: If D, fin-.-Nfx € N¢ and for each
Jj€[1.k] there is a path D 5 f;, then D— fiN--- N
fr € E¢; we say that this edge is derived from the paths
D> f;, for j € [1.k).

This definition can be made effective by inductively con-
structing a sequence of edge sets {Ec*}icn whose limit is
Ec. We take Ec® = {e — Ar | Ar — e € C} and con-
struct Ec't* from Ec* by adding one edge according to ei-
ther closure property 2 or 3. Since C is finite, we do not
have to worry about scheduling these additions. At some
finite stage, no more edges will be added, and the sequence
converges to Fc.

THEOREM 1 (SOUNDNESS). Given an entity D and a

role expression e, if there is a path D = e in Ec, then
D € exprg, (e).

ProOF. The proof is by induction on the steps of the con-
struction of {Ec*}ien shown above. We prove an induction
hypothesis that is slightly stronger than the theorem: For
each i € N and for any role expressions e; and e, if there is
a path ey — e in Ec', then exprg_ (e1) C exprg, (€).

We show the base case by using a second, inner induction
on the length of the path e; = e in Ec®. The inner base
case, in which e; = e, is trivial; we consider the step. Sup-
pose (e; — e) = (e; — ey —e). Because each edge in Ec°
corresponds to a credential, we have e — e; € C. It fol-
lows that exprg_(e2) C exprg, (e}, by definition of Sc. The
induction assumption gives us exprs, (e1) C exprgs, (ez), so
exprs, (e1) C exprs, (€).

We prove the step by again using an inner induction on the
length of e; = e, which we now assume is in Ec**'. Again
the basis is trivial. For the step, we decompose e; - e into
e1 — ez — e. There are three cases, depending on which
closure property introduced the edge e2 —e.
case 1: When e; — e is introduced by closure property 1,
the argument proceeds along the same lines as the base case,
using the inner induction hypothesis on e; = ey to derive
exprs, (e1) C exprg_(ez).

'While long, lefthand arrows (—-) represent credentials,
short, righthand arrows (=) represent edges, and short,

righthand arrows with stars (=) represent paths, which con-
sist of zero or more edges.




case 2: When ez —e is introduced by closure property 2, e
has the form A.ri.re, es has the form B.rs, and there is a
path B 5 Ay in E¢c*. The outer induction hypothesis gives
us exprg (B) C exprg (A.r1), i.e., B € Sc(A.r1). The inner
induction hypothesis gives us exprg (e1) C exprg, (B.r2).
Together with the definition of expr for A.r1.7;, these imply
exprs, (e1) € exprg, (e), as required.

case 3: When ez —e is introduced by closure property 3, e
has the form fi M- N fi, e2 = €1 is an entity D (because
entity nodes have no incoming edges), and there are paths
D 5 f; in Ec* for each j € [1..k]. The outer induction
hypothesis gives us D € exprg, (f;) for j € [1..k]; therefore,
exprs, (e1) C exprg, (e).

THEOREM 2 (COMPLETNESS). For any role, Ar, D €
Sc(A.r) implies there exists a path D 5 A.r in Ec.

The proofs for this and other theorems are omitted due to
space limitation; they can be found in the full version of this
paper.

Together, Theorems 1 and 2 tell us that we can answer
each of the queries enumerated at the top of this section
by consulting the credential graph. The rest of this section
gives algorithms for constructing subgraphs that enable us
to answer such questions without constructing the entire
graph. As we have seen, constructing the path D 5 A.r
alone proves D is in role A.r. However, where D = A.r
contains derived edges, the paths they are derived from must
be constructed first. The portion of the credential graph
that must be constructed is what we call a credential chain:
chain(D 5 A.r) is the least set of edges in F¢ containing
D 5 A.r and also containing all the paths that the derived
edges in the set are derived from.

3.3 The Backward Search Algorithm

The backward search algorithm determines the member
set of a given role expression eo. In terms of the creden-
tial graph, it finds all the entity nodes that can reach the
node eg. We call it backward because it follows edges in the
reverse direction. This name is consistent with the terminol-
ogy in X.509 5, 9], in which forward means going from sub-
jects to issuers and reverse means from issuers to subjects.
This algorithm works by constructing proof graphs, which
are equivalent to, but slightly different from, subgraphs of
a credential graph. The minor difference is discussed after
the presentation of the algorithm.

The backward search algorithm constructs a proof graph,
maintaining a queue of nodes to be processed; both initially
contain just one node, ep. Nodes are processed one by one
until the queue is empty.

To process a role node A.r, the algorithm finds all creden-
tials that define A.r. For each credential A.r —— e, it creates
a node for e, if none exists, and adds the edge e — A.r. In the
proof graph, there is only one node corresponding to each
role expression and each edge is added only once. Each time
the algorithm tries to create a node for a role expression e,
it first checks whether such a node already exists; if not, it
creates a new node, adds it into the queue, and returns it.
Otherwise, it returns the existing node.

On each node e, the algorithm stores a children set, which
is a set of nodes, e1, that e can reach directly (i.e., e—e1),
and a solution set, which is the set of entity nodes, D, that
can reach e (i.e., D = e). Solutions are propagated from e
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to e’s children in the following ways. When a node is notified
to add a solution, it checks whether the solution exists in its
solution set; if not, it adds the solution and then notifies all
its children about this new solution. When a node e; is first
added as a child of e; (as the result of adding e; —e1), all
existing solutions on ez are copied to e;.

To process an entity node, the algorithm notifies the node
to add itself to its own solution set.

To process a linked role node A.ry.7r;, the algorithm cre-
ates a node for A.r; and creates a linking monitor to observe
the node. The monitor, on observing that A.7; has received
a new solution B, creates a node for B.r; and adds the edge
B.ry— A.ry.re, which we call a link-containment edge.

To process an intersection node e = f;N---N fi, the algo-
rithm creates one intersection monitor, for e, and k nodes,
one for each f;, then makes the monitor observe each node
fi. This monitor counts how many times it observes that an
entity D is added. For a given entity D, each f; notifies e
at most once. If the count reaches k, then the monitor adds
the edge D —e. So, to summarize, in addition to the nodes
and edges in the credential graph, the algorithm constructs
monitors that implement closure properties 2 and 3.

Given a set of credentials C, the proof graph, Gy(e,, ¢, con-
structed by the backward search algorithm starting from eo,
is closely related to the credential graph, Ge.  Giyey, ¢y Is
almost identical to the smallest subgraph of G¢ whose node
set, N§, satisfies the following four closure properties and
whose edge set consists of all edges of Ec over nodes of N§:
(1) eo € N&; (i6) e2 € NE & ey — eg € Ec => e; € N3
(1) Arirg € NS => Ary € Ng and (iv) in---0 fi €
N¢ & j € {1.k] = f; € NQ. The only difference be-
tween Gl(eg,¢) and such a subgraph of Ge is this: Gheo, 0)
contains role nodes, created during the processing of linked
roles, that don’t appear in C. Specifically, when the algo-
rithm processes a linked-role node A.r;.rz, the node B.ry
and the link-containment edge, B.r; — A.r1.r9, are added,
even when B.r;y does not appear in C, and will therefore re-
ceive no incoming edges and no solutions. It is not difficult
to see that Gy, c) contains chain(D 5 ep) for every D
that can reach eg.

THEOREM 3. Given a set of credentials C, let N be the
number of credentials in C, and M be the total size of C:
Yosr—ecC lel, where |A] = |Ar| = |Aryre| = 1 and
|finn-- N fi| = k. Assuming that finding all credentials
that define a role takes time linear in the number of such
credentials (e.g., by using hashing), then the worst-case time
complezity of the backward search algorithm is O(N*+NM),
and the space complexity is O(NM). If each intersection in
C has size O(N), then the time complexity is O(N?3).

To see that O(N?) is a tight bound for the algorithm, con-
sider the following example:

C = {Aoro «— Ai, Aomi & Ao.Ti 1 modn, AiTo
Ai 1 mod n.T0, Ao.T’é——Ao,Ti.To I 0 <i< n}
There are N = 4n credentials. When using backward search
algorithm from Ag.r’, there are edges from each Aj.rg to
each Ao.7i.mo, where 0 < 4,7 < n, so there are n? such edges.
Each A;.7 gets n solutions, so the time complexity is n®.
We can see that intersections do not increase the worst-case
time complexity of this algorithm. O(NM) is a tight space
bound. Following is an example that reaches the bound: C =
{Ao.’f‘o e A;, Ao.ri— A0.Ti-1 mod n, Ag.r’ — Ao.riro N
A().Ti.Tl NN Ao T TK -1 | 0 <i< n}



(0) Alice (1) StateU.stulD (6) EPub.university.stulD (7) EPub.student
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Figure 1:

Gy(Alice,c)» the proof graph constructed by doing forward search from Alice with ¢ =
{EPub.student «— EPub.university student, EPub.university

«—— ABU.accredited, ABU.accredited

—

StateU, StateU.stulD «— Alice}. The first line of each node gives the node number in order of creation
and the role expression represented by the node. The second part of a node lists each solution eventually
associated with this node. Each of those solutions and each graph edge is labeled by the number of the node
that was being processed when the solution or edge was added. The edge labeled with 1 is a linking monitor.

3.4 The Forward Search Algorithm

The forward search algorithm finds all roles that an entity
is a member of. The direction of the search moves from the
subject of a credential towards its issuer.

The forward algorithm has the same overall structure as
the backward algorithm; however, there are some differ-
ences. First, each node stores its parents instead of its chil-
dren. Second, each node e stores two kinds of solutions: full
solutions and partial solutions. Each full solution on e is a
role that e is a member of, i.e., a role node that is reachable
from e. Each partial solution has the form (f1 n---N fi, 7),
where 1 < j < k. The node e gets the solution (fin-- N fi, 7)
when f; is reachable from e. Such a partial solution is just
one piece of a proof that e can reach f1N---Nfi. It is passed
through edges in the same way as is a full solution. When
an entity node D gets the partial solution, it checks whether
it has all k pieces; if it does, it creates a node for fin-- N fi,
if none exists, and adds the edge D— f1N--- N f.

The processing of each node is also different from that in
the backward algorithm. For any role expression e, forward
processing involves the following three steps. First, if e is
a role B.rg, add itself as a solution to itself, then add a
linking monitor observing B. This monitor, when B gets
a full solution A.r1, creates the node A.r;.r; and adds the
edge B.ro — A.ry.r2. The addition of such an edge results
in B.ry being added as a parent of A.r;1.r2. Second, find all
credentials of the form A.r «— e; for each such credential,
create a node for A.r, if none exists, and add the edge e —
A.r. Third, if e is not an intersection, find all credentials of
the form A.r«— fi 0 --- N fi such that some f; = e; then
add (fin:--N fx, j) as a partial solution on e.

Figure 1 shows the result of doing forward search using a
subset of the credentials in example 3.

THEOREM 4. Under the same assumptions as in theo-
rem 3, the time complexity for the forward search algorithm
is O(N?M), and the space complexity is O(NM).

3.5 Bi-direction Search Algorithms

When answering queries about whether a given entity, D,
is a member of a given role, A.r, we have the flexibility of
combining forward and backward algorithms into a search
that proceeds from both D and A.r at once. In this bi-
directional algorithm, a node e stores both its parents and
its children, as well as both backward solutions (entities that
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are members of e) and forward solutions (roles that e is a
member of).

In the centralized case, doing either forward search from
D or backward search from A.r suffices to answer the query.
However, using bi-directional search could improve search
efficiency (where search space size is sometimes exponential
in path length) by finding two shorter intersecting paths,
rather than one longer one. A variety of search strategies
bear consideration, and different algorithms can be devel-
oped based on them. The algorithms described above use
queues to organize node processing, resulting in breadth-first
search. If they used stacks, they would perform depth-first
search. In general, when there are several nodes that can
be explored (from either direction), they can be placed in
a priority queue according to some heuristic criteria, e.g.,
fan-out. Note that these remarks also apply to the forward
and backward algorithms.

In the distributed case, the ability to locate credentials
can become a limiting factor. This is the main issue we
address in section 4.

3.6 Implementation, Generalization, and Ap-
plication to SDSI

We have implemented the above algorithms in Java. Our
program can be configured to store the parent or child node
from which each solution arrives. Using this information,
one can easily trace paths, and compute the set of credentials
being used in any proof graph.

Our algorithms can be generalized to search for paths be-
tween two arbitrary role expressions. One way to do this is
to generalize the solution set to collect all reachable nodes,
not just entity and role nodes. Then, one knows that a path
e1 5 eq exists when e; is added as a backward solution on e
or when ey is added as a forward solution on e;. Of course,
such a change would affect the algorithm’s complexity.

Our algorithms can also be used to do chain discovery in
SDSI. To allow their construction in RTy, long linked names
can be broken up. Instead of using A.r — B.ri.ro. -+ 1%,
onecanuse {Are——Ary_ .7k, Ari_— ATk _o.Tk—1, ",
Ay e— Ari.ra, Ari+— B.ri}, in which the r}’s are newly
introduced role names. Then one can use any of the algo-
rithms to do goal-oriented chain discovery.

THEOREM 5. Given a set of “SDSI” credentials C, which
have arbitrarily long linked roles and no intersection, let



C' be the result of breaking up long linked roles. Then the
time complezity of the backward algorithm, applied to C’, is
O(N3L), where N is the number of credentials in C, and L
is the length of the longest linked role in C.

This O(N®L) worst-case complexity is the same as that
of the algorithm in Clarke et al. [8].

Instead of breaking up long linked names, one can extend
our algorithms to handle them directly. It is also not dif-
ficult to extend our algorithms to handle SPKI delegation
certificates. In particular, it is straightforward to extend
our techniques for handling intersections to handle thresh-
old structures as well.

4. DISTRIBUTED CHAIN DISCOVERY

The algorithms given in the previous section can be used
when credential storage is not centralized, but distributed
among credentials’ subjects and issuers. As discussed in sec-
tion 1, it is impractical to require either that all credentials
be stored by their issuers or that all be stored by their sub-
jects. Yet if no constraint is imposed on where credentials
are stored, some chains cannot be found without broadcast,
which we assume is unavailable.

EXAMPLE 4. Consider the following credentials from ex-
ample 3: ABU .accredited «— StateU and StatelU.stulD e
Alice. If both of these are stored exclusively with StatelU,
none of our search procedures can find the chain that autho-
rizes Alice. Arriving at ABU and at Alice, the procedure is
unable to locate either of these two key credentials.

This section presents a type system for credential storage
that ensures chains of well-typed credentials can be found.

4.1 Traversability

We introduce notions of path traversability to formalize
the three different directions in which distributed chains can
be located and assembled, depending on the storage charac-
teristics of their constituent credentials. We call the three
notions, forward traversability, backward traversability, and
confluence, respectively. Working from one end or the other,
or from both simultaneously, a search agent needs to be able
to find the credential defining each edge in a path, D 5 A.r,
as well as in the other paths of chain(D = A.7), which prove
the existence of derived edges in D - A.r.

Suppose that D -5 A.r consists entirely of edges that
represent credentials that are stored by their subjects. (In
this case, (D = A.r) = chain(D 5 A.r).) Wecall D5 Ar
forward traversable because forward search can drive its dis-
tributed discovery, as follows. Obtain from D the first cre-
dential of the path and, with it, the identity (and hence
the location) of the issuer of that credential. That issuer is
the subject of the next credential. By visiting each succes-
sive entity in the path and requesting their credentials, each
credential in the path can be obtained, without broadcast.

A backward traversable path is analogous to a forward
traversable path, except the credentials involved are held
by issuers. A path D 5 A.r that is backward traversable
can be discovered by doing backward search starting from
A.r. Credentials involved in the path can be collected from
entities starting with A and working from issuers to subjects.

Roughly speaking, a confluent path can be decomposed
into two subpaths, one forward traversable and the other
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backward traversable. When both ends are known, a con-
fluent path can be collected and assembled by starting at
both ends and working inwards.

We define these notions of traversability for both edges
and paths in credential graphs. Following the definition, we
discuss the intuition behind traversability of derived edges.

DEFINITION 2 (TRAVERSIBILITY AND CONFLUENCE ).
Let Ge = (Ne, Ec) be the credential graph for a given set of
credentials, C.

An edge added by closure property 1 is:

Forward traversable if the credential it represents
is held by each subject of the credential;

Backward traversable if the credential it repre-
sents is held by the issuer of the credential;

Confluent if it is forward or backward traversable.

A path e; = ey is:

Forward traversable if it is empty (e1 = e3), or it
consists entirely of forward traversable edges;

Backward traversable if it is empty, or it consists
entirely of backward traversable edges;

Confluent if it is empty, or it can be decomposed
into e1 > e — e 5 ey where e; 5 €
is forward traversable, e” 5 ey is backward
traversable, and ¢ — e is confluent. Note
that paths that are forward traversable or back-
ward traversable are also confluent.

An edge added by closure property 2, B.ro— A.r1.12 is:

Forward traversable if the path it is derived from,
B 5 A.ry, is forward traversable;
Backward traversable if B 5 Ay is backward
traversable;
Confluent if B = Ary is confluent;
An edge added by closure property 8, D— fi N N fi is :

Forward traversable if (a) there ezists an £ €
[1.k] with D = f; forward traversable, and
(b} for each j € [1..k], D 5 f; is confluent;

Backward traversable if (a) there exists an £ €
[1.k] with D 5 f; backward traversable, and
(b) for each j € [1..k], D 5 f; is confluent;

Confluent if for each j € [1..k], D = f; is con-
fluent;

Here is why a derived edge of the form B.rp — A.r;.7; has
the same traversability as the path that it is derived from.
Suppose there is a forward traversable path D 5 B.ry —
A.ri.rg = A, Starting at D, a search agent can traverse
to B.ry. From there, the agent knows B, which enables it
to continue searching, traversing B = A.r;. Upon reaching
A.r1, the search agent has proven the existence of B.rp —
A.ri.r2. Additionally, it knows A, so it can continue forward
search from A.r1.rs.

Now suppose there is a forward traversable path D = A.r
that can be decomposed into D— fiN-- N fi,— B.ry S A,
The edge fi N - N fi = B.r1 is forward traversable, so it
is stored by the entity base(f;), for each j € [1..k]. If there
is one fr with D 5 f, forward traversable, a search agent
can use it to get from D to f,. From base(fe), the agent can
obtain the credential B.ry — fi N -+ .M fi, thereby identify-
ing all other f;’s. The search agent then finds a path from



D to each f;, and continues its forward search from B.r;.
Since both ends are known, each path D 5 f; only needs
to be confluent. The rationale for backward traversability
of edges derived from backward traversible paths is similar,

4.2 A Credential Type System

If all credentials are stored by their issuers, all paths
are backward traversable. Similarly, if all credentials are
stored by their subjects, all paths are forward traversable.
As we argued in section 1, neither arrangement by itself is
satisfactory—greater flexibility is required in practice. Yet
some constraints must be imposed on credential storage, or
else many paths cannot be discovered. One way to organize
those constraints is by requiring that all credentials defin-
ing a given role name have the same storage characteristics.
Capitalizing on this observation to support distributed dis-
covery, we introduce a type system for credential storage, the
important feature of which is that, given a set of well-typed
credentials, every path in its credential graph is confluent.

In our type system, each role name has two types: an
issuer-side type specifies whether a search agent can trace
credentials that define the role name by starting from the
credentials’ issuers; the other, a subject-side type, specifies
these credentials’ traceability from their subjects.

The possible issuer-side type values are issuer-traces-none,
issuer-traces-def, and issuer-traces-all. If a role name r is
issuer-traces-def, then from any entity A one can find all
credentials defining A.r. In other words, A must store all
credentials defining A.r. However, this does not guarantee
that one can find all members of A.r. For instance, we
might have A.r «— B.ri, with r; issuer-traces-none. This
motivates the stronger type: issuer-traces-all. A role name
r being issuer-traces-all implies not only that r is issuer-
traces-def, but also that, for any entity A, using backward
searching, one can find all the members of the role A.r.

The possible subject-side type values are subject-traces-
none and subject-traces-all. If a role name r is subject-
traces-all, then for any entity B, by using forward search,
one can find all roles A.r such that B is a member of A.r.

There are three values for the issuer-side type and two
values for the subject-side type, yielding six combinations;
however, a role name that is both issuer-traces-none and
subject-traces-none is useless, so it is forbidden. This is
captured by the notion of well-typedness.

We now extend this type system to role expressions and
then define the notion of well-typed credentials. As we show
in the next section, together these two definitions guaran-
tee that when credentials are well-typed, the following three
conditions hold. If a role expression e is issuer-traces-all, one
can find all members of e by doing backward search from e.
If e is subject-traces-all, then from any of its members, D,
one can find a chain to e by doing forward search. If e is
issuer-traces-def, then from any of its members, D, one can
find a chain from D to e by doing bi-directional search.

DEFINITION 3 (TYPES OF ROLE EXPRESSIONS).

e A role expression is well-typed if it is not both issuer-
traces-none and subject-traces-none.

o An entity A is both issuer-traces-all and subject-traces-
all.

e A role A.r has the same type as r.
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o A linked role A.ri.ro is

when both r1 and ro are issuer-
traces-all

when r1 is issuer-traces-all and
ro 18 issuer-traces-def, or vy is
issuer-traces-def and ro is
subject-traces-all
issuer-traces-none otherwise

issuer-traces-all

issuer-traces-def

when both r1 and ro are
subject-traces-all
subject-traces-none otherwise

subject-traces-all

e An intersection fi - N fi is

when there exists an f,; that
is issuer-traces-all, and all
fi’s are well-typed
issuer-traces-def  when all f;’s are well-typed
issuer-traces-none otherwise

issuer-traces-all

when there exists an fo that
is subject-traces-all, and all
fi’s are well-typed
subject-traces-none otherwise

subject-traces-all

The typing rule for a linked role A.r;.r2 may need some
explanation. If both r; and r; are issuer-traces-all, then
from A.ri.rz, one can find all members of A.r;, and then,
for each such member, B, find all members of B.rs. If both
r1 and rq are subject-traces-all, then from any member, D,
of A.r1.ry, one can first find that D is a member of B.ry, and
then find that B is a member of A.r1, thereby determining
that D is a member of A.r1.r;. Knowing both ends, D and
A.r1.re, one needs to find a middle point, B.rz, using for-
ward or backward search from one side. Then the other side
can be handled by bi-direction search. If r; is issuer-traces-
all, one can find all members of A.ry, then ro only needs
to be issuer-traces-def. Similarly, if r; is subject-traces-all,
then one can trace to B.re from D, and so r1 only needs to
be issuer-traces-def.

DEFINITION 4  (WELL-TYPED CREDENTIALS). A  cre-
dential A.r «—— e is well-typed if all of the following
conditions are satisfied:

1. Both A.r and e are well typed.

2. If Ar is issuer-traces-all, € must be issuer-traces-all.
8. If A.r is subject-traces-all, e must be subject-traces-all.
4

. If A is issuer-traces-def or issuer-traces-all, A stores
this credential.

5. If Ar is subject-traces-all, every subject of this creden-
tial stores this credential.

Consider credentials in example 3. One possible typing
that makes all credentials well-typed is as follows: preferred,
spdiscount, student, and university are issuer-traces-def,
while accredited, stulD, and member are subject-traces-all.

4.3 Traversability with Well-typed Credentials

In this section we show that well-typed credentials whose
storage is distributed can be located as needed to perform
chain discovery.



LEMMA 6. AssumeC is a set of well-typed credentials and
Gc = (Nc, Ec) is the credential graph for C. Let e be any
role expression and D any entity. If there is a path D 5 e
in G¢, then we have the following:

1. D5 e is confluent.
2. If e is issuer-traces-all, D = e is backward traversable.

3. If e is subject-traces-all, D 5 e is forward traversable.

From Lemma 6 and Theorems 1 and 2, we have the follow-
ing theorem, which says that if credentials are well typed,
then role membership queries can be solved efficiently, even
when credential storage is distributed. This is because con-
fluent paths support efficient chain discovery, as discussed
above in section 4.1. Furthermore, for roles of type issuer-
traces-all, all members can be found efficiently. Finally, from
any entity, it is possibly to find efficiently all subject-traces-
all roles to which the entity belongs.

THEOREM 7. Assume that C is a set of well-typed creden-
tials and that G¢ = (N¢, Ec) is the credential graph for C.
Let A.r be any role and B any entity. Then we have the
following:

1. B € Sc(A.r) if and only if there exists a confluent path
B —*> A.’/’ n Gc.

2. If A.r is issuer-traces-all, then B € S¢(A.r) if and only

if there exists a backward traversable path B 5 A.r in
Ge.

3. If Ar is subject-traces-all, then B € Sc(A.r) if and

only if there exists a forward traversable path B -5 A.r
n Ge.

Using a typing scheme such as the one presented here can
also help improve the efficiency of centralized search, where
type information can help choose nodes to be explored next.

4.4 Agreeing on Types and Role Meanings

Our type system begs the following question: How can
entities agree on the type of a role name? This is the prob-
lem of establishing a common ontology (vocabulary), and it
arises for RTy whether or not typing is introduced. Consider
again the credentials in example 3. Given StateU.stulD «—
Alice, how does EPub know what StateU means by stulD?
Is it issued to students registered in any class, or only to
students enrolled in a degree program. This issue arises
in all trust-management systems. Different entities need a
common ontology before they can use each others’ creden-
tials. However, name agreement is particularly critical in
systems, like RTp, that support linked roles. For instance,
the expression EOrg.university.stulD only makes sense when
univeristies use stulD for the same purpose.

We achieve name agreement through a scheme inspired by
XML namespaces [7]. One creates what we call application
domain specification documents (ADSD), defining a suite of
related role names. An ADSD gives the types of the role
names it defines, as well as natural-language explanations
of these role names, including the conditions under which
credentials defining these role names should be issued. Cre-
dentials contain a preamble in which namespace identifiers
are defined to refer to a particular ADSD, e.g., by giving
its URIL Each use of a role name inside the credential then
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incorporates such a namespace identifier as a prefix. Thus,
a relatively short role name specifies a globally unique role
name. Each ADSD defines a namespace. Note that this is a
different level of namespaces from the notion of namespaces
in SDSI. The latter concerns itself with who has the au-
thority to define the members of a role; the former is about
establishing common understandings of role names.

5. FUTURE AND RELATED WORK

In this section, we illustrate briefly the next step in our
role-based trust-management language work. We then dis-
cuss other future directions and related work.

As mentioned in section 2, RT} is the first step in a series
of role-based trust-management languages. We are extend-
ing the algorithms presented here to RT}, where role names
are terms with internal structure, including logical variables
(whose notation starts with “?”, as in ?file). For example,
the credential OS fileop(delete, ?file) «—— OS.owner(?file) can
be used to express the policy that the operating system will
let a file’s owner delete the file. We are also working on
defining an XML representation for RT) credentials and ap-
plication domain specification documents, as we discussed
in section 4.4. RT} will be reported in a forthcoming paper.

5.1 Typing and Complete Information

Inferencing based on distributed credentials is often lim-
ited by not knowing whether all relevant credentials are
present. The standard solution to this problem is to limit the
system to monotonic inference rules. This approach ensures
that, even without access to all credentials, if the credentials
that are present indicate D is a member of A.r, it is certainly
true. Missing credentials could make you unable to prove D
is a member of A.r, but cannot lead you to conclude D is a
member of A.r erroneously.

When credentials are well-typed, as defined here, this re-
striction to monotonic inference rules could be relaxed. The
type system ensures we know who to contact to request the
relevant credentials. So assuming they respond and we trust
that they give us the credentials we ask for, we can assume
that we obtain all the credentials that are relevant. In this
context, it may be safe to use non-monotonic inference rules.
This would allow, for instance, granting role membership
contingent on not already being a member of another role.
This could form a basis for supporting RBAC-style sepa-
ration of duties, as well as negation as failure. It will be
necessary to manage the trust issue. For instance, we may
trust that some issuers will give us all relevant credentials,
while not trusting some subjects to do the same.

5.2 Credential Sensitivity

Like most prior trust-management work, we assume here
that credentials are freely available to the agent responsi-
ble for making access control decisions. In general, creden-
tials may themselves be sensitive resources. Techniques have
been introduced [18] that support credential exchange in a
context where trust management is applied to credentials,
as well as to more typical resources. (See [19] for additional
references.) That work assumes that credential storage is
centralized in two locations: with the resource requester and
with the access mediator. It remains open to manage dis-
closure of sensitive credentials whose storage is distributed
among the credential issuers and subjects.



5.3 Other Related Work

In section 2.1, we compared RT, credentials with name
definition certificates in SDSI 2.0. In section 3.1 we reviewed
existing work to chain discovery in SDSI. Now, we discuss
some other related work.

QCM (Query Certificate Managers) [12] and QCM’s vari-
ation SD3 [13] also address distributed credential discovery.
The approach in QCM and SD3 assumes that issuer stores
all credentials and every query is answered by doing back-
ward searching. As we discussed in the introduction, this is
impractical for many applications, including the one illus-
trated in example 3. Using backward search to determine
whether Alice should get the discount requires one to begin
by finding all ACM members and all university students.

Graph-based approaches to chain discovery have been used
before, e.g., by Aura [1] for SPKI delegation certificates and
by Clarke et al. {8] for SDSI name certificates without linked
names. Neither of them deals with linked names.

6. CONCLUSIONS

We have introduced a role-based trust-management lan-
guage RT, and a set-theoretic semantics for it. We have also
introduced credential graphs as a searchable representation
of credentials in RTy and have proven that reachability in
credential graphs is sound and complete with respect to the
semantics of RTy. Based on credential graphs, we have given
goal-oriented algorithms to do credential chain discovery in
RT,. Because RTp is more expressive than SDSI, our algo-
rithms can be used for chain discovery in SDSI, where exist-
ing algorithms in the literature either are not goal-oriented
or require using specialized logic programming inferencing
engines. Because our algorithms are goal-oriented, they can
be used whether or not credentials are stored centrally. We
have also introduced a type system for credential storage
that guarantees distributed, well-typed credential chains can
be discovered. This typing approach can be used for other
trust-management systems as well.
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APPENDIX B

Making Trust Negotiation Realistic: A Suitable Policy Language
and the Management of Information about Credential Possession

William H. Winsborough and Deborah Shands

Abstract

When principals seek authorization in an attribute-based access control system, the sytem
verifies their attributes by authenticating credentials that document those attributes. Because
many attributes are sensitive, principals must protect their credentials. Several strategies have
been presented in the literature for the incremental exchange of protected credentials in trust
negotiation. However, with the exception of the eager strategy, all strategies presented so far
fail to adequately protect information about which credentials the negotiators hold, protecting
instead only the full disclosure of the credential. Many existing strategies explicitly acknowledge
possession of a credential to anyone who asks. Additionally, prior strategies have used unrealistic
authorization policy languages. We present the suitability of the policy language, Delegation
Logic, and our adaptation of it for use in ABAC. We also provide a preliminary analysis of
issues surrounding the control of access to knowledge of credential posession and content.

1 Introduction

Access control presents difficult problems in a distributed computing environment where resources
and the subjects requesting those resources are distributed. Many commonly used access control
mechanisms rely heavily on obtaining an authenticated identity of the resource requestor. Unfor-
tunately, when the resource owner and the requestor are relative strangers, access control based
on principal identity may be ineffective. In addition, identity-based access control (IBAC) does
not scale well in many collaborative environments. In coalition-based collaborative environments,
for example, organizations have resource-sharing agreements, but the individual identities of users
within those organizations are not necessarily known to coalition partners. The need for a resource
owner to be aware of all users from all organizations that might access its resource is a significant
administrative burden entailed by the use of IBAC.

Attribute-based access control (ABAC) offers a flexible, scalable alternative to IBAC. Under
ABAC, authenticated principal attributes are used to determine whether a subject (acting on behalf
of the principal) is permitted to access the requested resource. For example, in the physical world,
a university ID card asserts that its subject has “student” status at the issuing university. Many
university service providers may request to see the ID card as proof of student status before offering
resources to the cardholder. ABAC policies can easily express access conditions that range from
tightly restrictive to broadly permissive (e.g., “department chairs only,” or “any current student.”)
This offers the flexibility necessary for arbitrarily fine-grained control over access to protected
resources.
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ABAC offers a highly scalable approach to access control in distributed environments by sup-
porting delegation of attribute authority. By relying upon attribute values issued by other system
entities, an access mediator delegates authority over those attributes. For example, when a theater
offers a student discount on movie tickets, it often accepts a university ID as evidence of student sta-
tus. In doing so, the theater delegates authority over student status determination to universities.
Delegation of authority over subject principal attributes is critical to the scalability of distributed
access control (e.g., the movie theater cannot reasonably maintain student records on its own!)

Scalable access control, supported through delegation of attribute authority, is especially crit-
ical in collaborative computing environments. For example, suppose that company DEF supplies
component parts that are used in products produced by company ABC. To expedite the supply pro-
cess, the two companies agree to a purchase order and invoicing system: ABC will authorize certain
employees to sign purchase orders; DEF will deliver the parts, based on those orders; and ABC will
pay on DEF’s invoices for those parts. Under an IBAC system, DEF must know the identity of each
ABC employee who is authorized to sign purchase orders. If one of those employees leaves the ABC
company or additional purchasing agents are hired, DEF must be informed immediately. Under an
ABAC system, the ABC comptroller issues credentials to certain employees, indicating that they
have “purchasing authority.” DEF’s access control system need only recognize and authenticate the
“purchasing authority” attribute on receiving a request from an ABC employee. By enabling the
ABC comptroller to determine which ABC employees have the “purchasing authority” attribute,
DEF reduces its administrative burden significantly. In a distributed computing environment, the
scalability of access control systems is heavily dependent on the scalability of administrative pro-
cesses. ABAC supports scalable access control by enabling scalable security administration based
on delegation of attribute authority.

Note that the use of ABAC does not preclude the capture, authentication, and logging of
identity information to ensure individual user accountability. ABAC simply removes dependence
on principal identity for access decision making. ABAC is also compatible with the use of role-
based access control (RBAC) and other access control models, as principal attributes may be used
to place the requesting subject into a specific role, according to system policy. ABAC may be used
in either a mandatory or a discretionary access control system.

ABAC systems depend on the exchange of credentials which specify principal attributes and /or
rules for deriving assertions about principals. Principal attributes (such as financial or medical
data) and sometimes derivation rules (such as proprietary actuarial formulas) may be sensitive. The
process of trust negotiation enables resource requestors and access mediators to establish trust in
one another through the cautious, iterative, disclosure of credentials. To support trust negotiation,
access policies are established to regulate the disclosure of credentials, as well as the disclosure of
information system resources. A variety of trust negotiation strategies and protocols have been
developed to facilitate trust establishment. A trust negoatiation strategy is an abstract protocol,
which defines issues such as when to transmit credentials and, in some cases, policy content, and
how to determine that a negotiation has failed. For instance, existing trust negotiation strategies
are distinguished by the manner in which they select credentials for disclosure: one strategy, called
the eager strategy, exchanges only credentials, while all others exchange credential access policies,
which are used in various ways to focus credential disclosures on those relevant to the negotiation.

This paper addresses a critical trust negotiation problem for ABAC. Current trust negotiation
strategies do not protect credential possession. Suppose, for example, that Alice holds a government
security clearance credential. In her trust negotiation with Bob, she describes conditions under
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which she will be willing to disclose that credential. Unfortunately, by providing Bob with her access
policy for that credential, Alice has inadvertently revealed that she holds a security clearance,
though she has not told Bob the contents of that credential (i.e., her level of clearance). We expect
that many credentials with sensitive content will also be sensitive to acknowledge possession of.
Toward the eventual developement of a strategy that addresses this problem, we present here an
analysis of this problem of protecting credential possession.

Another deficiency of prior negotiation strategies is that they are based on unrealistic policy
languages. Most use a language based on propositional logic, which is entirely unable to meet the
needs of ABAC. There is no way to identify acceptable credential issuers by the attributes of those
issuers. The most realistic language employed [8] to date is the Trust Policy Language [1]. However,
it has the serious flaw that policy rules cannot be contained in credentials. This means that an
access mediator is unable to make use flexible use of rules that others have defined for assigning
new attributes by interpreting existing attributes. Such power is essential to flexible distribution
of authority and for mapping between nomenclatures of different issuers and organizations.

The remainder of the paper is organized as follows. Section 2 provides background on trust
negotiation, including a brief summary of five prior strategies. Section 3 presents the problem
of protecting information about which credentials a negotiator holds. It also outlines our basic
approach to protecting this information in future negotiation strategy designs. Section 4 discusses
policy languages for use in trust negotiation and ABAC. It presents the shortcomings of languages
used in prior work of this kind, and illustrates our choice of a more suitable language. Section 5
presents a preliminary analysis of safety issues concerning information flow and other characteristics
of negotiation strategies. It is aimed at supporting and possibly improving the design approach
discussed in Section 3. Section 6 concludes.

2 Background in Trust Negotiation

A trust negotiation consists of sequence of disclosures of credentials (which document attributes)
and, in some negotiation strategies, disclosures of policy content that serves to focus the credential
disclosures. The principal aim of any negotiation is to satisfy a particular target trust requirement,
which in turn enables some desired transaction to take place. A target trust requirement (or just a
trust target) is a policy whose origin may be, for instance, the access policy of a requested target
resource. A scenario in which a client process requests access to a server resource is often used
to motivate or illustrate negotiation strategies. However, alternative trust target origins may be
equally appropriate. For instance, a potential requester may ask a service provider to satisfy a
given policy before the requester is willing to reveal sensitive information contained in the planned
request. In general, the arrangement is symmetric: each negotiation participant establishes a trust
requirement of the other, and the ensuing negotiation seeks to satisfy both. For simplicity of
presentation, the remainder of this paper considers the common scenario in which each negotiation
attempts to satisfy the trust target set by the access mediator of a service provider.

2.1 Requirements, Expectation, and Assumptions of Trust Negotiation Strate-
gies

All existing trust negotiation strategies meet a short, common list of requirements. In particular,
a strategy must:

26



1. Protect the credential itself. The credential itself provides the potentially sensitive attribute
and its field values. It can be used to document this data, not only to the negotiation
opponent, but to third parties as well. Thus, the credential must be protected by an access
control policy whose satisfaction by a negotiation opponent unlocks the credential, signifing
that it is safe to transmit it.

2. Terminate. Negotiations must, of course, terminate on either success or failure. Each par-
ticipant must be able to detect, at some point in the negotiation, whether further exchanges
will be futile.

3. Be efficient. Common measures of efficiency for distributed computing protocols are applica-
ble to trust negotiation (e.g., number of messages exchanged, message size). In addition, we
may want to quantify local computational complexity of algorithms, for instance, that check
whether a specific set of credentials satisfies a given trust target.

4. Be complete. A trust negotiation strategy must not allow a potentially successful negotiation
to terminate in failure, assuming both parties are negotiation in good faith, according to the
strategy.

We make the following assumptions about credentials, negotiators and policies:

1. There are no universally trusted third parties. We cannot expect that both participants in a
trust negotiation will agree to submit all of their credentials and policies to an escrow agent
which could then evaluate all the material and render a decision on whether the requester
met the trust target. Participants must establish trust through bi-lateral negotiations.

2. Each participant must negotiate in good faith. While every trust negotiation system should
protect credential content from attackers (i.e., prevent a negotiator from being tricked into
disclosing credentials without prior satisfiaction of their access policies), an attacker can easily
mislead a negotiator about what to expect in return for credential disclosures. In particular,
a service provider may transmit a request for credentials, claiming it comprises the access
policy of some resource, but then refuse to provide the resource upon receiving the requested
credentials. Satisfaction of this requirement is essential to ensure completeness of any trust
negotiation strategy.

3. A participant holds (and is responsible for disclosing) all credentials used to meet trust targets
on its behalf. For example, Alice holds both her student ID credential, and a credential from
an accreditation body stating that Alice’s university is accredited. A movie theater may offer
Alice a student discount on her ticket after checking first, that an entity claims that Alice
is a student, and, second, that the entity making the claim is a university. The requirement
that Alice hold both of these credentials helps to simplify the protocol and completeness
arguments. In future work, we plan to explore the consequences of relaxing this assumption.

4. A participant’s collection of credentials and policies do not change in the midst of a nego-
tiation. This requirement helps us to simplify the protocol and completeness arguments. If
new credentials or policies must be accomodated, a negotiator should terminate the current
negotiation and begin a new one.
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2.2 Summary of Prior Trust Negotiation Strategies

Several strategies for negotiating trust have been presented in prior work. In many of these strate-
gies, the participants focus the credential exchange by informing one another about which creden-
tials would, if transmitted, further the negotiation. In this section, we sketch the behavior of five
strategies, focusing on the material that participants share in order to guide their negotiation.

2.2.1 The FEager Strategy

The eager strategy [8] is the simplest trust negotiation strategy and one in which participants share
no information which might help to focus the negotiation. Once a trust target is established, each
participant sends all of its currently unlocked credentials. Initially, only the unprotected credentials
are unlocked. As credentials are exchanged, however, additional credentials become unlocked and
are then sent. Eventually, either the trust target is satisfied (i.e., the negotiation succeeds), or the
negotiation reaches a point after which no new credentials are unlocked and the trust requirement
remains unsatisfied (i.e., the negotiation fails).

Using the eager strategy, negotiators give each other no information about which credentials
would be helpful toward meeting the trust target. Consequently, to ensure that negotiations are
successful as often as possible, negotiators send every unlocked credential, in case it might be
necessary to success. Negotiators also send unlocked credentials as soon as they are unlocked, to
minimize the number of credential exchanges. Delay can be introduced without losing completeness,
provided negotiators eventually send every unlocked credential unless and until the negotiation
succeeds.

2.2.2 The Parsimonious Strategy

The parsimonious strategy [8] is one by which participants exchange as much information as possible
to focus their negotiation before they begin to exchange credentials. No credentials are exchanged
before the participants determine that the trust target can be satisfied. The strategy was named
for its stinginess with credential disclosures.

In this strategy, the trust target is the first in a sequence of credential requests exchanged by
participants, during an initial phase of the negotiation. Throughout this request exchange phase,
the participants, say, Alice and Bob, take turns asking one another for credentials. Each credential
request is based on its predecessor. For example, when Alice receives a request from Bob, asking
to see the credit limit on her credit card, Alice may reply that she will share that information with
Bob only after he has shown her that he represents a legitimate mortgate lender. If Bob satisfies
Alice’s request, then the access policies on her credit limit information must be satisfied and she
may then disclose her credential to Bob.

When either participant, say Bob, receives a request that can be satisfied by transmitting
credentials that are unlocked (for instance, because they are not sensitive), the initial phase of the
negotiation ends and credentials start to flow. In this case, Bob sends the credentials that solve
the last request, while replaying the last request he made to Alice. Because of how Alice’s last
request was constructed, the set of credentials Bob transmits with his replayed request unlocks a
set of Alice’s credentials that satisfies Bob’s replayed request. Next, Alice transmits the unlocked
solution to Bob’s replayed request, while also replaying the request she had originally made just
prior to the one Bob just replayed. Again, the credentials Alice transmits unlock a solution to
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the replayed request that she transmits with them. This process is repeated, running backwards
through the sequence of requests, satisfying each of them, until Alice and Bob eventually satisfy
the trust target.

Negotiation failure is detected if the initial phase goes on too long. If the negotiation can
succeed, it will do so within a number of steps that is less than 4 times the number of credentials
either side has.

Negotiators using the parsimonious strategy give each other such precise information about
which credentials they need to receive that no credentials flow unless the negotiation will be suc-
cessful. As we will see in section 3.2, under many circumstances, this turns out to be too much
information.

2.2.3 The Backtracking Strategy

The backtracking strategy of [9] uses a propositional language, and works by negotiators exchanging
requests for specific (propositional) credentials. It is not clear whether it could be extended it to a
realistic language. However, doing so is unlikely to be fruitful because negotiations require too many
messages to flow. The strategy manages to reduce the message number from cubic in the number of
credentials held to quadratic by introducing a clever intelligent backtracking technique. However,
every other strategy requires only a linear number of messages. The authors attempt justify their
quadratic complexity by claiming (erroneously) that the size of messages in the parsimoneous
strategy grows exponentially. However, we believe that a backtracking approach cannot be made
efficient.

2.2.4 The All-Relevant Credentials Strategy

The all-relevant credentials strategy and the all-relevant policies strategies both [7] use the notion
of a credential being “syntactically relevant” to satisfying an access policy. In [7], where a propo-
sitional language is used, a credential (which is, in that presentation, represented in policies by a
propositional variable) is “syntactially relevant” to a policy if it appears there.

Negotiators using the all-relevant-credentials strategy identify to one another credentials that
are relevant to satisfying access policies of the target resource and of other relevant credentials.
When credentials that are unlocked become relevant, they are transmitted. Eventually, either the
trust target is satisfied, or additional credentials neither become relevant nor are transmitted.

2.2.5 The All-Relevant-Policies Strategy

Negotiators using the all-relevant-policies strategy exchange policies that govern access to relevant
credentials and to other resources. This enables participants to limit transmission of credentials
to groups of credentials that satisfy a potentially relevant policy, allowing fewer credentials to flow
than in either the eager or the all-relevant credenitals strategies. Completeness of the strategy
requires that all potentially relevant policies flow. Negotiation failure is detected when no further
policies become relevant, neither negotiator can transmit unlocked credentials to satisfy a policy it
has received, and yet the trust target remains unsatisfied.

According to the all-relevant-policies strategy, each negotiator transmits access policies for each
credential that is “syntactically relevant” to solving one of the policies it received from the other
negotiator. The trust target is the first policy transmitted.
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3 Possession Protection

This section explains why it is that prior strategies do not adequately protect information about
which credentials a negotiator holds. It then explains our plans for protecting this information in
future designs. Before either of these, however, we need to introduce the notion of a credential’s
type.

3.1 Credential Contents versus Credential Type

Our approach to protecting credential possession is based on a notion of credential typing. The type
of a credential is typically intuitive. It might be a diploma or a driver’s license. More abstractly, a
credential’s type is attribute that the credential documents. The type does not include the other
data contained in the credential, namely attribute field values (parameters).

The difference between content protection and possession protection depends on where in the
credential structure the information of interest is represented. If possession of a credential is
acknowleged, we mean that possession of a credential having a certain type is acknowledged. On
the other hand, when we talk about credential content, we are talking about attribute fields or
parameters. For example, a driver’s license might be a credential’s type, while age, hair color, and
class of vehicle would be fields.

Sometimes it is clear whether information belongs in a credential’s type or in its parameters.
Some information is clearly content: where parameters have values, like age, the values are clearly
content. But elsewhere the boundary is vague, possibly even arbitrary. Consider a credential
documenting membership in a state’s legal bar association. In principle, the type could just be
“membership.” However, it might also be appropriate to identitfy the organization in the cre-
dential’s type. We do not attempt to prescribe in this situation. Rather, we simply point out
that information contained in a credential’s type will be unprotected unless possession protection
measures are adopted.

3.2 Possession Protection in Prior Strategies

Among the five strategies outlined above in Section 2.2, none but the eager strategy [8] successfully
protects which credentials a negotiator has. The eager strategy discloses no information of any kind
about a credential until that credential’s access control policy has been satisfied. This is because
no policy content is exchanged at all. In effect, this means that no credential is even mentioned by
either party until it is unlocked. In every other strategy, the response to a credential request can
disclose whether the requested credentials are held.

The backtracking strategy [9] discloses which credentials are possessed when the credentials are
requested. The credentials treated in that work are propositional, in the sense that they contain
no parameters. All the information content that affects policy evaluation, and hence authorization
decisisions, is disclosed freely to anyone who asks. The only content to which access is controlled
is the digital signature that enables the credential to be verified. While the propositional nature
of credentials is not essential to Ting’s backtracking strategy, what is essential is the requirement
that, without prior trust establishment, negotiators must respond to queries about whether they
have credentials that satisfy specific policy requirements provided in the query.

The all-relevant-credentials and all-relevant-policies strategies [7] provide access control policies
(or some simplified information about them) for credentials when anyone requests those credentials.
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Since this information is provided only for credentials actually held, it can be used by anyone to
determine what credentials a negotiator holds.

In the parsimonious strategy [8], negotiators are required to respond to a request for credentials
by presenting a counter request for opponent credentials that are logically necessary and sufficient
to unlock a set of credentials that satisfies the original request. This means, for example, that if
Alice receives a request from Bob for a credential showing she has top-secret clearance, Alice has
to respond in a way that discloses to Bob whether or not she has such a credential. Specifically, if
Alice has the credential, she has to respond by transmitting the access policy that governs it, and
if she do not, she has to respond by indicating that the negotiation cannot succeed. So while the
strategy does not actually transmit the credential itself unless doing so is authorized, it discloses
information about which credentials Alice has in an uncontrolled way.

We believe that negotiators will have too many credentials for the eager strategy to provide
adequate performance. Some amount of policy information will been to be exchanged in order to
focus credential disclosures on relevant credentials. Among the existing strategies that do this,
we believe that the all-relevant-policies strategy is the best suited for adaptation to possession
protection. In particular, the basic design of both the parsimoneous and the backtracking strategies
seem to be incompatible with possession protection. The all-relevant-credentials strategy, which
has a similar outline, could be a candidate as well, though we expect it to be far less effective than
the all-relevant-policies strategy in limiting irrelevant credential transmissions.

In the next section we outline our approach to adapting the all-relevant-policies strategy to
protect credential possession.

3.3 Our Basic Approach to Possession Protection

The outline of the negotiation strategy we envision is as follows. This outline is based on the
all-relevant-policies strategy [7]. It ignores obvious optimizations, like avoiding retransmission of
credentials sent in previous messages.

1. Alice’s Strategy. Takes: (BobCreds, BobRequests)
2. Verify signatures on BobCreds.

3. If Bob is the resource requester, check whether BobCreds unlock access to requested resource.
If so, negotiation succeeds.

4. Determine the set of Alice’s credentials that are relevant to satisfying BobRequests.
5. Determine Alice’s requests for Bob’s credentials.

6. If that set has changed since the last time, send them to Bob.

7. Otherwise,

(a) Check for failure, and
(b) Find a set of credentials to disclose to Bob.
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Our basic approach to protecting information about which credentials are possessed is this. In step
4, Alice determines which credential types are relevant to satisfying Bob’s credential request. In
step 5, for each relevant credential type, whether she holds such a credential or not, Alice always
transmits a policy that governs acknowledging credentials of that type. Once Bob satisfies this
acknowledgement policy (which we also sometimes call possession protection policy), Alice transmits
access control policies (disclosure policies) for each credential she holds of that type. (If there are
none, that fact can be inferred because no access control policies are transmitted.)

To facilitate negotiators being able to transmit acknowledgement policies for credentials they do
not hold, we suggest that issuers post suggested acknowlegement policies for each type of credential
that they issue. Inevitably, a negotiator will not possess acknowledgement policies for every type of
credential that they do not possess. However, this just signifies that the negotiator does not consider
non-possession of that credential to be sensitive. Note that negotiators are motivated to obtain
some acknowledgement policies for credentials they do not have, even if they don’t consider that fact
sensitive, just because doing so reduces the information content of providing an acknowledgement
policy.

4 Language and Definitions

This section outlines the suitability and adaptation of Delegation Logic (DL) [4] for use in trust
negotiation and ABAC. It begins by discussing the shortcomings of languages used in prior trust
negotiation work. It then explains the illustrates the use of key DL language features by considering
an ABAC example. It goes on to present our notion of credential type. It concludes by formalizing
how DL is used to make access control decisions.

4.1 Prior Languages Used in Trust Negotiation

Several languages besides DL have been discussed as candidates for policy specification. Here we
discuss the shortcomings of the alternative languages, motivating our selection of DL. The key
distinguishing feature turns out to require a special approach for managing possession protection.
The section concludes with a summary of language requirements.

In [6], Prolog was used to specify access policies. Credentials contained purely extensional
information: facts, but no rules for deriving new facts. The policy served to map those facts to more
highly abstract attributes, called roles in [6]. Prolog proved quite flexible and expressive. However,
Prolog is unsatisfactory as a production policy language because it is excessively expressive, flexible,
and low-level. A production policy language should be special purpose, abstracting out issues that
are common to all policies.

Propositional Logic, used in [9] and [7] does not explicitly designate issuer or subject of cre-
dentials. It is a central function of attribute-based access policy to specify trusted issuers. Con-
sequently, purely propositional languages can serve only illustrative purposes. Additionally, it is
necessary to link the subject of one credential with the issuer of another to be able to delegate
attribute authority based on issuer attributes.

The Trust Policy Language (TPL) [1] is an attribute-based policy language that maps credentials
to groups, which the authors propose be used as a basis for access control. Among the alternatives to
DL, TPL is the best for ABAC. However, there are two missing features. One important ommission
is that TPL attributes (called interchangably “groups” and “roles”) are atomic, and cannot have
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parameters, which significantly inhibits policy modularity. The second omission is more critical,
however: TPL does not allow credentials to specify rules that can be used to derive attributes from
other attributes. This means that all rules for interpreting credentials in any given authorization
decision must be written by the same author.

The inability to use rules written by others (without manual administrative action) is a serious
limitation. Rules written by other can translate attributes from one nomenclature to another. They
can be used to interpret credentials issued by third parties. They provide enormous flexibility.

Thus, the feature of DL that most distinguishes its suitability for our purpose from the best
of its competitors is DL’s ability to express rules, issued on the authority of someone other than
the access policy author, that can be used to derive new attributes. In other words, attributes
can be defined intensionally as well as extensionally. Rules can be encapsulated for transmission in
verifiable credentials, just as more conventional extensional attributes are. We call credentials that
contain rules intensional credentials.

This feature of DL—support for intensional credentials—has a interesting and important impact
on trust negotiation. Rules can be used to prove a principal has an attribute, but only if additional
supporting attributes can first be proven. Now trust negotiation must enable the transmission of
credentials that prove those supporting attributes, as well as transmission of the rule. In strategies
that transmit access policy content, it must be transmitted for the additional supporting credentials.
As we see below in section 5.2.1, the timing of the transmission of this additional policy material
is key to reliable possession protection.

We conclude this section with a summary of ABAC language requirements:

1. Clear, high-level semantics. General purpose languages are not appropriate because they over-
burden policy and credential authors. Procedural semantics and, worse, semantics based on a
reference implementation are inappropriate because their complexity will introduce ambiguity
and variation among policy interpretations.

2. Monotonic. Particularly because negotiators control the availability of their own credentials,
it would be unacceptable to confer more authorizations when a credential is withheld.

3. Parametric attributes. Field values, such as age or spending limit, must be representable.

4. Ability to delegate attribute authority to entities based on their own attributes. This is a key
to ABAC’s scalability.

5. Ability to use attribute-derivation rules defined by others. Such rules need to be allowed in
credentials, where their authenticity can be verified.

4.2 Using Delegation Logic for ABAC

To enable ABAC, access policies must be specified in an expressive language with unambiguous
semantics. Unfortunately, the implementation-dependencies of an operational semantics can be
particularly problematic in a distributed environment, where we are most interested in using ABAC.
Delegation Logic (DL) [4] overcomes this issue by providing a model-theoretic semantics of policy
compliance. Additionally, DL provides rich expressive power for the assessment of trustworthiness,
the conferment of trust, and the specification of rules for reasoning about trustworthiness and trust
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decisions. In this section, we introduce portions of Delegation Logic (DL) that we propose to use
in trust negotiation.

Intuitively, DL enables the formal expression of rules for determining when credentials are
sufficient to satisfy a policy. A brief discussion of common implementations of a few example DL
clauses may help to provide an intuitive understanding of their meaning before we proceed with
a discussion of the formalisms. Consider the following DL clause, from the purchasing example of
Section 1:

HR says job.title(Alice, f‘purchasing agent’’). 1)

In clause (1), “HR” and “Alice” stand for specific principals, represented by their public crypto-
graphic keys. “HR” represents the human resources department of the ABC company, while Alice is
an ABC employee. “job_title(Alice, ‘ ‘purchasing agent’’)” means that the value of Alice’s
“job_title” attribute is “purchasing agent.” Clause (1) can be embedded in a credential, signed
by the HR department. This allows the credential recipient to verify the integrity and authenticity
of the clause, which says that the HR department asserts that Alice is a purchasing agent.

Continuing the example, the ABC company comptroller may want to allow purchasing agents
to sign purchase orders (up to $5000) for any of the corporate partners with whom ABC has
a purchasing agreement. By using the job title assertion from the HR department, the ABC
comptroller delegates authority over Alice’s job title to the HR department:

ABC says purchase_authority(Alice, 5000) if (2)
HR says job.title(Alice, ‘‘purchasing_agent’’).

The comptroller can use the assertion of clause (1), together with its own rule (2) to derive the
assessment:

ABC says purchase_authority(Alice, 5000). (3)

Of course, the comptroller would not invent a new purchase authority rule for each ABC em-
ployee, but will instead use a more general rule:

ABC says purchase_authority(?X, 5000) if 4)
HR says job_title(7?X,‘‘purchasing agent’’).

In DL, specific principals are denoted by constants (e.g., “ABC,” “Alice,” and “HR”). Logical
variables, such as ?7X, denote unspecified principals. A DL variable, which begins with question
mark, can be systematically replaced throughout a clause by an arbitrary logical term—in this
case, by any constant representing a principal. If Alice is substituted for 7X in (4), we obtain (2).

DL provides constructs which can be used to express various forms of delegation of authority,
a concept central to ABAC. In using (4), the ABC comptroller delegated authority over employee
job titles to the HR department. More sophisticated forms of delegation are necessary, however, to
support scalability for ABAC. One such form is the ability to delegate credential issuing authority,
based on the delegatee’s attributes. For example,

DEF says sell(7X, Widget) if (5)
7Y says purchase_authority(?X, ?Z) AND
DEF says business_partner(7Y) AND
?Z > 1000.
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The rule expressed in (5) says that the DEF company will honor a Widget purchase request
signed by an individual who is granted purchase authority by a business partner. The spending limit
on the purchase authority attribute must be at least $1000, to accomodate the price of Widgets.
This example illustrates the advantage of delegating authority, based on the delegatee’s attributes:
the policy does not explicitly list all of the companies that might assign purchase authority. Rather,
it “generically” delegates purchase authority to any company that has the “business_partner”
attribute. This method of delegation is critical to two aspects of administrative scalability. First,
it enables a modestly-sized ABAC policy to use the expertise of a broad base of credential author-
ities without specifically mentioning each credential authority that might eventually be employed.
Trust assessment rules need not necessarily grow in number, complexity, or specificity, as the user
population or number of services grows. Second, the policy administrator need not know every
credential authority whose credentials might be used to satisfy the policy. This reduces the scope
of knowledge and administrative experience required of the policy administrator. By enabling
attribute-based delegation of credential issuing authority, DL supports both of these important
aspects of scalability for ABAC administration.

Rules (4) and (5) can be combined with the following two facts to allow DEF to conclude that
Bob may purchase a Widget:

HR says job_title(Bob, °‘purchasing agent’’) (6)

DEF says business_partner (ABC) ()

To determine whether Bob’s Widget purchase order should be accepted, we make the following
query:

DEF says sell(7Bob, Widget)?

Now that we have an intuitive understanding of some simple DL clauses, we can define some
terminology that will be used throughout the remainder of the paper. In DL, says and if are
reserved words. The left-hand side of the if is called the head of the clause (e.g., from (4), “ABC
says purchase_authority(?X, 5000)”). The right-hand side is called the body of the clause (e.g.,
from (4), “HR says job_title(?X,‘‘purchasing agent’’)”). The if expresses a right-to-left im-
plication. A DL clause whose body is empty asserts the head unconditionally. Such a clause is
written without the if and is called a fact (e.g., from (7), “DEF says business_partner (ABC)”.
A clause where the body is not empty is called a rule (e.g., (5)). The issuer of “DEF says
business_partner (ABC)” is DEF. The issuer of a clause head is also the issuer of the clause.

The DL clauses that we discuss in this paper are composed of direct statements. A direct
statement takes the form Princ says Pred(ty,...,t,) (e.g., from (6), “HR says job_title(Bob,
‘ ‘purchasing.agent’’)”). Here, Princ is a principal denoted by a variable or a constant, Pred is
a predicate symbol (e.g., “business_partner” from (7)), and tj,...,t, are logical terms. A logical
term is a constant, a variable, or a compound term—a function symbol applied to a tuple of other
logical terms. Clauses (5) and (7) above use the logical term “business_partner” to represent an
attribute/value pair. Note that a function application is not evaluable in logic programming, but
is rather a kind of tree data structure. Strictly speaking, DL does not permit function symbols to
take arguments, allowing only O-arity functions (i.e., constants). This is known as the “datalog”
restriction, which is logically sufficient to ensure that evaluation of ordinary logic programs is
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tractable. However, this restriction can be relaxed to allow bounded depth compound terms without
jeopardizing tractability.

The semantics of DL clauses is derived from the semantics of ordinary logic programs (OLP).
For example,

(4),(5),(6),(7) = DEF says sell(Bob, Widget) (8)

where the left-hand side of the |= consists of the four clauses, (4), (5), (6), (7). By k=, we mean
classical logical entailment, which states that every model of the left-hand side is a model of the
right-hand side. On both sides, the DL clauses are (implicitly) mechanically transformed into OLP
(see [4]), enabling the semantic foundation of OLP to be applied (see for instance [5]). DL queries
can then be evaluated by using the transformation and then applying one of the available efficient
implementations of the sound and complete proof procedure for OLP.

The version of DL we use here is called Delegation Logic Programs version 1 (D1LP) in [4, 2.
(This language is slightly different from the earlier language of the same name presented in [3] and
was introduced in [4] to correct technical tractablity issues with the earlier version.) When we refer
to DL in this paper, we mean D1LP as described in [4].

The semantics (and the implementation) of DL programs transform them into definite OLP
programs, which do not use logical negation. As a consequence, our policies are monotonic. This
means that, for example, if entailment (8) holds and more clauses are added to the left-hand side,
then the right-hand side (“DEF says sell(Bob, Widget)”) continues to follow. For our purposes,
monotonicity implies that consideration of newly obtained credentials will not reverse a previous
positive determination of policy compliance. Conversely, policy compliance cannot be achieved by
virtue of withholding some credentials. We view the monotonicity property as essential in a context
where requestors control and protect the credentials that can be used to check policy compliance.

4.3 Credentials and Credential Types

A credential contains a collection of attributes regarding its subject and, thus, is a critical element
of an ABAC system. In this section, we use DL to formalize the notion of a credential and develop a
notion of credential type. The latter notion has not been precisely specified in prior trust negotiation
strategies and is critical both to the precision of the possession protection strategy specification
and to the development of the failure detection algorithm.

A credential Cred represents a set containing one or more DL clauses. The issuer of the clauses
in a credential must be the principal that signs the credential. The set of clauses in Cred can be
recovered by using the function application ExtractClauses(Cred). We also apply ExtractClauses to
sets of credentials, where it returns the union of the resulting clause sets.

We say that a clause defines the predicate used in its head. Thus, rule (5) above defines sell.
We extend the idea of a clause defining a predicate to that of a credential defining a predicate. We
formalize this idea by the relation, defines, which we write:

Cred defines Pred iff Pred is defined by some clause in ExtractClauses(Cred).

This suggests a notion of credential type: if Cred defines Pred, we say that Cred has type Pred.
Since Cred defines Pred may hold for several values of Pred, credentials may have polymorphic
type. This is a weak notion of type, in that it does not provide any sense of type safety, but is
sufficient for our purposes.
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Our principal requirement of a type is that it identify a category of credentials that are relevant
to policy content that is tranmitted during trust negotiation. This notion of credential type provides
an abstraction that serves two important purposes. First, it supports the determination of credential
relevance. For example, Alice may request that Bob present a credential of type “driver’s license,”
without telling him exactly which fields of the license she intends to examine. This allows her to
indicate to Bob which credentials she might accept, without enumerating all of the DMV authorities
which may suffice. Second, the notion of credential type permits a negotiator to avoid unnecessary
disclosure of field values. In our example, Bob may admit to having a credential of type driver’s
license without being forced to also specify that his license is for Bob Smith, fifty years old, brown
eyes, brown hair, 150 lbs., glasses required, etc. Alice and Bob can negotiate the types of the
credentials that they may disclose to one another, before discussing some of the potentially sensitive
details of those credentials. Thus, by introducing the abstraction of credential type, we enable
participants to begin the negotiation concentrating on what kinds of credentials they are willing to
admit having, and then to continue by negotiating which ones they will actually show each other.

4.4 Access Policy

An ABAC access policy specifies rules, ultimately based on authenticated requestor attributes, for
determining whether a protected resource may be released to a requestor. In a trust negotiation,
protected resources may include application or system objects (usually, the target resource, or
primary goal of the access request), as well as credentials, knowledge of the existance of credentials,
and policies, themselves. Access policies must, therefore, be applied to each of these entities. When
access to a resource R is protected in accordance with a policy P, we refer to P as the policy that
governs R. In this section, we provide formal definitions of access policy and a semantics for policy
compliance.

We have chosen DL as our policy expression language due to its expressive power and axiomatic
semantics (through translation into OLP). Definite Trust Policy Language (DTPL), described in [1],
is also a monotonic languuage which can be mapped to OLP. Though DTPL allows a policy
compliance checker to make use of facts provided by another authority, it does not support the use
of policy rules developed by other authorities. For example, DTPL would allow the HR department
to use a fact such as (7) in evaluating a rule such as (5). It would not, however, permit DEF to use
a rule such as (4), signed by the ABC comptroller, to determine whether a given ABC employee
has purchase authority. The ability to share such rules for reasoning is critical to scalable access
control in a distributed system.

An access policy (or simply a policy) is given by a set Pof DL clauses. For instance, we might
have P={(4), (5)}, where (4) and (5) are clauses from above. A DL engine is used to check the
sufficiency of requestor credentials against target resource access policy during the authorization
process. We assume that issuer identity and credential content integrity are first verified in the
usual manner. Clauses contained in requestor credentials are extracted and then combined with
the set of clauses that make up the local policy governing the target resource. This combined set
of clauses is loaded into a DL evaluation engine, and a query corresponding to the request for
the target resource/action is posed to the engine. If the query can be satisfied, then the action
is authorized; otherwise it is not. When the target resource/action is the disclosure of a specific
credential, then the query we pose to the DL engine uses the “discloseTo” predicate as in:

Alice says discloseTo(DEF)? 9)
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This frames the task of designing a DL policy: a policy must define the query predicate so that
the query is true exactly when authorization is appropriate. For instance, Alice may prefer to re-
lease her sensitive “purchase_authority” attribute only to entities that have a legitimate need
for that information (i.e., ABC’s business partners). The policy governing the release of her
“purchase_authority”might be a rule such as:

Alice says discloseTo(?Y) if (10)
ABC says business._partner(7Y).

The DL engine implements a semantics defined in terms of logical entailment. We now use
that same semantics to define a Boolean-valued function, authorize, which indicates whether
a requestor with a given set of credentials complies with a specific access policy. Recall from
section 4.3 that, for a given set of credentials, RequestorCreds, ExtractClauses(RequestorCreds) yields
the set of clauses contained in any of the credentials.

Definition 4.1 (authorize): For any policy, P, any set of credentials, RequestorCreds, and any
requestor key, RequestorKey, define authorize by:

authorize(P, RequestorCreds, RequestorKey)
= ExtractClauses(RequestorCreds) U P = discloseTo(RequestorKey).

Here |= denotes classical logical entailment.

5 Analysis

This section presents a preliminary analysis of safety concerns regarding information flow and
completeness of trust negotiation. It is aimed at supporting or improving the design ideas outlined
in section 3. As the findings presented are highly preliminary, some readers may wish to skim this
section.

5.1 Credential Relevance

The strategy algorithm sketched in section 3.3 above uses (in Line 5) the notion of credentials that
are relevant to a request. Intuitively, a credential is treated as relevant if it could potentially assist
in satisfying an oponent policy governing either the target resource or another relevant credential.
Roughly speaking, if one of Alice’s credentials is relevant to a policy she receives (in Line 1) from
Bob, then the policies governing that credential must be transmitted to Bob, enabling Bob to try
to unlock Alice’s credential. The reason why Bob transmits policies to Alice in the first place is to
enable Alice to limit her credential disclosures to credentials that are relevant. However, if Alice’s
definition of relevance is too narrow, causing her to overlook important credentials, the negotiation
may fail unnecessarily.

This section examines what it means for a credential to be relevant to a negotiation. As we
shall see, several notions of relevance are possible, and the notion selected has a variety of impacts
on negotiation characteristics. For instance, the fewer credentials that are deemed relevant, the
fewer credentials (and policies) actually flow during negotiation, which supports the principal of
least privilage.
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On the other hand, a credential must be deemed relevant to have its access policy transmitted.
This is the defining characteristic shared by different notions of relevance in our discussion: relevant
credentials are the ones that have their acknowledgement and access policies transmitted. If the
opponent does not receive the access policy, it may not transmit credentials needed to unlock an
important opponent credential. Consequently failing to treat enough credentials as relevant can
destroy a strategy’s completeness.

We begin by making the latter observation precise, establishing a lower bound on the number
of credentials that are deamed relevant and on the set of associated credentials that have to be
transmitted to support strategy completeness. Then we perform a variety of other amazing feats
that will be certain either to win us national aclaim, or to cause us to lose our jobs and be thrown
in jail, one or the other.

5.1.1 A Spectrum of Relevance Relations

This section introduces the notion of a relevance relation, which is the concept we use to formalise
a credential’s relevance to a policy. The simplest type of relevance relation consists of creden-
tial/policy pairs where the credential could participate in satisfying the policy. We call this kind of
relevance simple relevance. As we shall now see, it works well when credentials contain facts, but
no rules.

Assuming Credentials Contain Only Facts

When credentials contain only facts, a natural notion of simple relevance is one in which a credential
is relevant to a request if it participates in a minimal solution of that request. That is, it is part of
a set of credentials that is a solution of the request, and no proper subset of that solution is also a
solution. We call this minimal-solution relevance.

The cost of determining whether a given credential can participate in a minimal solution to a
given policy is likely to be quite high. This holds true, even if a negotiator has a modest number
of credentials, since simple relevance is formalized as a single, universal binary relation that does
not consider which credentials a negotiator actually possesses. Fortunately, over estimating the
set of credentials that is relevant to a policy is probably acceptable. (As we shall see below, the
important thing is not to underestimate this set.)

In general, we call one relevance relation stronger than another if it is formalized by a smaller
set of policy/credential pairs. The strongest kind of simple relevance that supports negotiation
completeness is the minimal-solution variety. In principal any relation containing the minimal-
solution relation as a subset also can yield a complete negotiation strategy. For illustration, we
describe four of the most natural examples.

Trivial relevance. This relation makes every credential relevant to every policy.

Same-predicate relevance. This relation considers a credential relevant to a policy if the cre-
dential defines a predicate that is used by the policy (i.e., that occurs in a policy clause
body).

Unifiability relevance. Here, a credential is relevant to a policy if it contains a fact that unifies
with a call in a policy clause body. Clearly unifiability relevance is a stronger notion of
relevance than same-prediate relevance.
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Same-predicate, issuer, and subject relevance. This is like unifiability, except that not all
arguments are required to unify. Of course, there are several different versions of this notion,
depending on which arguments are required to unifiy. The one named here has the issuer and
subject unifiable.

When Credentials Contain Arbitrary Clauses

When credentials can contain rules, minimal-solution simple relevance degenerates to being the
same as trivial relvance: i.e., it makes every credential relevant to every policy. (To see this,
consider any policy, p1, and any credential ¢; that participate in a minimal solution of p;. Now
consider any credential, ca. To see that ¢y also participates in a minimal solution consider a
credential that is identical to ¢; except that the head of ¢y is added to ¢;’s body.)

Of course the problem is that minimal-solution simple relevance considers all possible creden-
tials, not just the ones actually held by a negotiator. For this we introduce a family of relations,
each one with its own credential pool.

For instance, we might write

Rep C Creds x Policies

for a relevance relation for credential pool CP C Creds. In general, we call such relevance relations
pool-specific. For instance, a pool-specific minimal-solution relation Rcp would have Rcp(c, p) hold
if ce C C CP and C is a minimal solution of p.

Note that even in the facts-only case, the pool-specific minimal-solution relevance relation is
stronger than the simple minimal-solution relation. The difference between them is that the simple
relation considers as relevant credentials that would have to be combined with credentials not
currently held in order to satisfy a policy. The pool-specific relation does not.

In the present discussion, we generally assume that credentials held by a requester are the only
credentials that will be considered in support of an access request. One can imagine designs where
this assuption would have to be relaxed. For instance, some designs allowing credentials to be
accumulated by the access mediator might require this. However, without restricting the form of
credentials accumulated by the access mediator, all credentials become relevant to all policies, as
we have seen. Though part of important future work, these, and other problems that arrise if we
relax the assuption that credentials are accumulated solely by the requester, are beyond the current
scope.

As in the facts-only case above, efficiency concerns necessitate consideration of relevance rela-
tions that approxmiate this strongest, safe notion of pool-specific relevance—the minimal-solution
notion. And as above, interesting candidate definitions use predicate matching or unification. Now,
with rules in credentials, the definitions must be extended to consider credentials whose clause heads
match bodes of other relevant credentials. We call these notions of relevance deep-matching rela-
tions, to distiguish them from the notions discussed above, which we call shallow-matching relations.
(Although shallow-matching relations do not safely approximate the pool-specific minimal-solution
relation, we shall see that they are useful in organizing incremental disclosures of authorization and
access policies. Note that they are easily extended to credentials containing rules. For example,
the definition of (shallow) unifiability relevance above says that “a credenital is relevant to a policy
if it contains a fact that unifies with a call in a policy clause body.” In the context of credentials
containing rules, this should be read as “a credential is relevant to a policy if it contains a clause
whose head unifies with a call in a policy clause body.”)
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Deep-matching, pool-specific, same-predicate relevance. For a given credential pool, CP,
this relation considers a credential ¢ € C'P relevant to p if the clause in ¢ defines a predicate
that is used in the body of a clause that is in p or in some other ¢/ € CP that is also relevant
to p.

Deep-matching, pool-specific, unifiability relevance. This relation resembles the one above,
except that the head of the clause in ¢ must unify with a call in a clause in p or in some other
¢ € CP that is also relevant to p.

Deep-matching, pool-specific, partial unifiability relevance. This relation resembles deep-
matching, pool-specific, unifiability relevance, except that not all predicate parameters have
to unify.

To a first approximation, all relevant credentials must have their policies transmitted. However,
one aspect of relevance that becomes particularly important for controling information flow when
credentials can contain rules is the fact that not every relevant credential has to have its authoriza-
tion and access policies transmitted immediately. Waiting is controlled by a policy transmission
stratgy. The limits on how long you can wait, as well as a lower bound on which credentals have to
be considered relevant, is given in section 5.1.2. In subsequent sections, we study how that freedom
is essential to protecting information about credential possession.

5.1.2 Safety Requirement on Credential Relevance

The aim of this section is to clarify the intuition that in strategies based on the outline given in 3.3,
credentials are not transmitted unless there is some indication that they are relevant to negotiation
success. So far our characterization of relevance is rather imprecise. For one thing, it bears
examining what it means for a credential “potentially to assist in satisfying an oponent policy.”
Moreover, it is not essential that every policy governing every such credential be transmitted
immediately as soon as it can be identified. As mentioned above and explored further in later
sections, a variety of notions of relevance are possible. Our immediate goal is to clarify minimal
safety requirements of each candidate notion that ensure negotiation is appropriately supported.

We are interested here only in complete strategies. Thus, our safety requirement must en-
sure that (good-faith) participants provide to one another sufficient information to identify every
credential that might need to be transmitted for the negotiation to succeed.

For a given credential, Cred, there is a (possibly empty) set of policies that must be satisfied
before Cred can be transmitted. Let us denote this set by govPolicies(Cred). This set may
contain access policies and acknowledgement policies. (If some policies in the set are protected,
as discussed in [7], the set will also contain additional policies which must be satisfied before the
protected policies are transmitted and subsequently satisfied.) Let us extend govPolicies to sets of
credentials by taking the union of the function values on the set elements, so that if CredSet is a
set of credentials, we have

govPolicies(CredSet) = U govPolicies(Cred).
CredeCredSet

Now we can state our safety requirement. Note that rather than focusing on the set of relevant
credentials, it is in effect a closure property on the set of transmitted policies, transPolicies. This
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is natural, given that the key characteristic of relevant credentials is that they are the ones that
have their acknowlegement and access policies transmitted:

Requirement 5.1 When a negotiation is declared a failure, for each minimal solution, sol, to a
transmitted policy pol € transPolicies, if govPolicies(sol) € transPolicies then there exists a policy
in govPolicies(sol) N transPolicies that cannot be satisfied.

This characterization of our safety requirement allows a short-circuit-style, lazy evaluation of
logical and: if a set of policies would all have to be satisfied to unlock a resource, and one of the
policies cannot be satisfied, the others do not have to be evaluated, or even transmitted. We use
the resulting flexibility below in section 5.2.1, where we show how delaying transmission of policies
governing some relevant credentials enable possession protection for credentials that contain rules.

5.2 Possession Protection and Relevance

When acknowlegement policies are used to support possession protection, the credentials that
have their acknowlegement policies transmitted are those that are relevant to requests recieved.
This includes credentials that are not held, as well as those that are. So relevance now determines
which acknowledegement policies—as well as which access policies—are candidates for transmission,
subject to the policy transmission strategy.

5.2.1 Impact of Rules in Credentials for Possession Protection

As we have seen, when credentials contain rules, simple minimal-solution relevance degenerates
to trivial relevance. The problem is that for every policy and every credential, there is another
hypothetical credential that can be used as part of a solution to the policy just in case the first
credential is also used. Also as we have seen, what a simple relevance relation fails to consider is
the pool of credentials that the negotiator actually possesses. This can be overcome by using a
credential-pool relevance relation. However, this presents certain problems when we aim to protect
information about which credentials are possessed: credential-pool relevance relations naturally
contain information about the credential pool. Such information is leaked if, for instance, acknowl-
edgement policies are transmitted for credentials whose relevance to a request is indirect, via a
second credential in the pool. In particular, the presence of that second credential in the pool is
disclosed.

The solution to this problem is to use a shallow relevance relation and to add to the policy the
clauses in credentials that are already unlocked. This approach is safe with respect to Require-
ment 5.1.

5.2.2 Relevance Classes and Acknowledgement Classes

By definition, Alice’s relevant credentials are the ones whose policies should (eventually) be trans-
mitted. So Alice’s relevant credentials are all actually held by Alice. However, for the purpose of
analyzing information flow, it is useful to consider the behavior of Alice’s relevance relation over
the whole space of possible credentials, not just over the credentials Alice happens to possess.

A given relevance relation defines an equivalence relation over credenitals where two credentials
are equivalent if, for every policy, they are either both relevent or both irrelevant to the policy.
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The space of possible credentials is partitioned into equivalence classes by this equivalence rela-
tion. We call these equivalence classes relevance classes and the induced partition a relevance
partition. Different relevance relations induce different relevance paritions. For instance, shallow
predicate-match relevance induces relevance classes that consist of credentials that all define the
same prediate, and shallow unification relevance induces relevance classes that consist of credentials
whose clause heads are all identical, up to variable renaming. The relevance classes that consist of
credentials that are relevant to a given policy are called the relevance classes of that policy.

Relevance classes are sets of credentials that, subject to timing considerations imposed by an
acknowledgement strategy, have their acknowledgement policies and possibly their access policies
transmitted in response to the same requests.

A related notion in our approach to possession protection is the partitioning of credentials into
sets that are governed by the same acknowlegement policies. We call these classes acknowledge-
ment classes. Each negotiator must conceptually partition the entire space of possible credentials
into acknowledgement classes and associate policies with each class. In principal, any partition is
possible. However, as we shall see, there is an important relationship between the acknowldgement
partition and the relevance partition, which leads to a natural preference for certain paritions.

In practice, participants may actually represent only a fraction of the acknowlegement classes
they define, depending on the granularity of their acknowledegement partition. They must be
prepared to construct new classes on the fly, and to associate acknowlegement policies with them,
should elements of those classes be relevant to a request recevied during negotiation. Consequently,
the part of the partition that is explicitly represented will tend to grow over time, as the negotiator
defines acknowlegement policies for additional classes—sometimes on the fly.

There is an important relationship between the two partitions defined by relevance classes and
by acknowledgement classes. To a great extent, negotiators are free to choose their own definitions
of these two partitions. However, the acknowledgement partition should always be either the same
as or a refinement of the relevance partition. This means that each relevance class should be the
union of one or more acknowledgement classes.

We set asside for the moment the effect of policy transmission strategy, and assume that, once
a relevant credential’s acknowlegement governing policy is satisfied, its access policy is transmitted.
Suppose a negotiator has a relevance class that is not the union of a collection of acknowledgement
classes. That means there are credentials that are governed by the same acknowledgement policy
and that are relevant to different policies.

Suppose Alice has an acknowlegement class policy A; that is governed by ack Policy,, which Bob
satisfies. And suppose that Alice uses a relevance relation such that two of the induced relevance
classes, Ry and Ry, each intersects A;. Bob could now pose a request for R; and then a request for
Ry, and, by observing whether he gets back any policies from Alice in each case, determine whether
Alice has any credentials in each of the two classes. This is additional information beyond what
Bob is entitled to know at this point, which is whether Alice has any credentials in A4;.

To make this more concrete, let us consider an example. Suppose that Alice associates acknowl-
edgement policies with credentials according to the predicate defined, so, for instance, all credentials
defining the predicate, diploma, are governed by the same acknowlegement policy. Once Bob satis-
fies that acknowlegement policy, he is entitled to know that Alice has credentials defining diploma.
Suppose that Alice has diploma credentials:

1. UMichgan says diploma(Alice, B.S., 1986, Physics).
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2. Purdue says diploma(Alice, M.S., 1988, ComputerScience)

Now suppose that Alice uses a relevance relation based on minimal solutions. If Bob sends Alice
a request of the form

UniversityX? says diploma(Alice, degree?, year?, major?)?

Alice will respond with two policies, p; and po, corresponding to the numbered credentials
shown above. However, if Bob then sends a request of the form

UniversityX? says diploma(Alice, Ph.D., year?, major?)?

Alice will send no policies, and Bob can infer that she doesn’t have a Ph.D. credential. This
is not authorized information for Bob to receive, however. All Bob is entitled to know, based
on satisfying the acknowledgement policy for diploma credentials is that Alice has some diploma
credentials. Alice can avoid this potential leakage of information by making her acknowlegement
classes smaller or by making her relevance classes bigger. For instance, she could make her relevance
relation be based on simply matching predicates. Then when Bob requests any kind of diploma
credential, once he has satisfied the acknowlegement policy, he always just receives p; and py from
Alice. So all he learns is that Alice has at least two diploma credentials, but he doesn’t discover
anything about their contents.

Alternatively, Alice could plug the leak by making her acknowlegement classes be the same as
the minimal-solution relevance classes. This means that each acknowlegement class consists of a
single credential. In this case, satisfying the acknowlegement policy means that Bob is authorized
to know whether Alice has each specific credential, for instance, whether Alice has a Ph.D. from the
University of Toronto from 1992. This is considerably more information than simply knowing Alice
has some degree credentials, which may or may not have her as the subject, as was the information
authorized by the acknowlegement policy in the original example. Not only would Alice want
to make the acknowlegement policy correspondingly strong, but she would need to keep track of
potentially many, many more acknowlegement policies. Note that Alice can always use the same
policy for as many credentials as she wishes. What changes if she uses the finer minimal-solution-
based acknowlegement classes is the amount of information that Bob is authorized to receive if he
satisfies the acknowlegement policy. Note that in this case Alice would have essentially no need
for credential access policies, since the acknowlegement policy should only be satifiable by entities
that are authorized to know the full contents of the credential.

5.3 Future Analysis Work

Our discussion here has framed certain efficiency issues, but leaves it for future work to follow up on
several open problems. Among these are (1) techniques for analyzing policy dependences, (2) policy
management support that allows the credentials that are relevant to a negotiation to be pinpointed
without unsafe information flow, and (3) other methods designed to shorten negotiations.

6 Conclusion

We have proposed a realistic policy language for use in trust negotiation. We have also analyzed
the problem of controling the flow of information about which credentials are held. Both proposal
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and analysis are preliminary and likely to require revision as we continue this line of research, in
which we aim to provide a realistic trust negotiation strategy.
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Summary

The proliferation of Internet-enabled devices will usher in an age of anytime, anywhere
computing. When a client and server begin an interaction, most often they will be strangers,
with no pre-existing relationship. Mutual trust establishment between them will not be based on
identity, but rather on other properties of interest encoded in digital credentials, the online
analogues of today’s paper credentials. For example, a web server may be interested in
providing service only to clients residing in a particular state. Knowing the exact identity of a
client (e.g., SSN) is of no help when deciding whether to provide service. Instead, the client
needs to give the server a digital credential that attests to their state of residence. Prior to
disclosing that credential, the client may require a credential from the server attesting to its
proper handling of private information. A bilateral exchange of digital credentials can be used to
establish mutual trust gradually, a process called frust negotiation. The research during the
project focused on the understanding and development of trust negotiation strategies, support for
sensitive access control policies, and an architecture for proactive trust establishment for
sensitive content.

Trust Negotiation. There are a huge number of possible strategies for negotiating trust, each
with different properties with respect to speed of negotiations and caution in giving out
credentials and security policies. In the autonomous world of the Internet, entities will want to
choose strategies that meet their own goals, which means that two strangers who negotiate trust
will rarely use the same strategy. To date, only a tiny fraction of the space of possible strategies
has been explored, and no two of the strategies proposed so far will interoperate. During this
project, we conducted the first investigation into support for a protocol for trust negotiation that
would allow negotiation strategies to interoperate.

Proactive Trust Establishment. A client’s initial request to a server may include sensitive
information in the body of the request message such as SSNs, credit card numbers, travel
destinations, or medical information. Clients will often require assurance that servers are
authorized to receive sensitive content and that they will handle it appropriately according to
well-established policies that the client or the client’s institution establishes or follows. Clients
need that assurance in advance of making the actual service request. Thus, they must proactively
establish trust based on the content of the request before the request is sent to the server. This
project examined the requirements of an architecture for proactive trust establishment for
sensitive content. The goal is an architecture that scales from individual use to an organization
with thousands of clients.

Summary. This research has advanced the understanding of principles surrounding trust
negotiation that will empower individuals and organizations with scalable trust establishment
approaches that protect privacy and sensitive content to enable ubiquitous trust negotiation.

Deliverables. The deliverables for this project include the remainder of this document that
describes an architecture for proactive trust establishment and an attached article, “TrustBuilder:
Middleware to Enable Trust Negotiation Strategy Interoperability.” The article outlines a
protocol to allow two parties to independently select their trust negotiation strategy and have the
strategies interoperate. The article is joint work with Professor Marianne Winslett and Ting Yu
at the University of Illinois at Urbana-Champaign.
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Proactive trust establishment for sensitive content

A client’s initial request to a service provider sometimes includes sensitive information such
as social security numbers, credit card numbers, travel destinations, monetary amounts, or
medical information in the body of the request message. Clients will often require assurance that
service providers are authorized to receive sensitive content and that they will handle it
appropriately according to well-established policies that the client, client’s institution, or the
client’s coalition establishes. Clients need that assurance in advance of making the actual service
request. Thus, they must proactively establish trust based on the content of the request before the
request is sent to the server.

Trust negotiation capabilities must be expanded to a broader context than in the past in order
to handle privacy requirements for sensitive content effectively. Previous work in trust
negotiation dealt only with servers initiating trust negotiations in response to a client attempting
to access a secure service. During the negotiation, either party could attempt to establish trust in
the other party prior to disclosing a credential to them. Thus, clients could establish trust in
servers only in the context of credential disclosure during a trust negotiation. Servers could
establish trust in the client for other purposes in addition to credential disclosure, but only in
response to a request for service, never proactively.

The need for proactive trust establishment for sensitive content goes beyond the context of a
web browser contacting an unfamiliar web server to include any process that is pushing sensitive
content to an unknown destination. For instance, web servers that push sensitive content to web
caches or any point-of-presence on the Internet will have similar trust requirements. An
automated solution to proactive trust establishment, rather than a manual solution, will be
advantageous for potentially sensitive content that must be distributed rapidly to meet business
needs.

Prior advances in trust negotiation offer a partial solution to the problem of proactive trust
establishment. For example, languages for expressing policies and negotiation strategy
developments can all be re-used in this context. There are two aspects of the problem that earlier
work in trust negotiation did not address that will be addressed in this project. The first of these
is the problem of determining the policy that specifies the trust requirements associated with
sensitive content. Often, this determination will need to be made dynamically at runtime when
the content is generated instead of relying on static associations between policy and content
made by administrators in advance. The second aspect is the problem of determining the
appropriate trust negotiation representative associated with a service that will receive the
sensitive content so that trust can be legitimately established prior to initiating the sensitive
service request.

1. Dynamic policy association

Prior to anyone accessing a sensitive service and credential, a user or administrator creates an
access control policy to protect it. The association between the policy and the secure resource is
static. Managing that association at runtime is straightforward. Some sensitive content may not
exist until runtime, such as when a web-based purchase order is constructed at the client just
prior to invoking the purchasing service. The security agent that must proactively establish trust
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may need to dynamically associate a policy with the content at runtime. It cannot rely upon static
policy associations established a priori, but must create the association on demand. We call this
a content-based access control policy.

The determination of the appropriate content-based policy for establishing trust in a server
must be under client control. The appropriate policy cannot be statically associated by the server
or service and be delivered to the client on demand before a service request is made because
different clients may demand different assurances from the same server. For example, with
respect to privacy policies, clients in the United States will be interested in knowing that servers
adhere to self-regulating guidelines such as TRUSTe. European clients will be interested in
following EU privacy directives and should divulge private information only to servers that
adhere to the principles of “Safe Harbor” [8].

To allow a client to determine and enforce a content-based access control policy prior to
making a sensitive service request, we propose the run-time architecture for dynamic policy
association for sensitive content shown in Figure 1. A content analysis engine inspects out-
bound content to map it to a content disclosure policy that is enforced by the local security agent
before the content can be disclosed.

A content analysis engine must be able to handle many types of data to be useful in practice.
In object-oriented systems such as CORBA [20], Enterprise JavaBeans (EJB) [19], or Java, the
object model can be leveraged in determining the semantics of content. This will allow content
disclosure policies to be associated with application-level objects. The analysis engine can map
content to appropriate security policies based on the type or value of the content. Structured
data formats, such as XML [22] are suitable for reliable and efficient policy association if the
semantics of the data are captured in the structured data representation. For instance, XML data
tags and HTTP POST messages can capture semantic information in tags or labels. Other semi-
structured data techniques [5] [6] and natural language understanding [15] [16] [18] technology
will need to be employed to protect a broader range of content composed of less-structured data
types. In time, standard conventions and terminology will develop for highly sensitive data so
that appropriate privacy controls can be enforced.

An important design consideration is where to position the content analysis engine in the trust
negotiation architecture. CORBA interceptors [20] allow functionality such as security to be

Content Content Content

— 5 | Content L Sensitive disclosure Security agent

(objects, XML, analysis (SS#, credit card content policy in charge of

HTTP, semi- engine | number, address, etc.) mapper ’ proactive

structured data, etc.) trust

Sensitive content analysis establishment
programs (XML, HTTP, object- T Role-based access
oriented, pattern matching, control policies

natural language, and semi-
structured data analyzers)

Figure 1. A run-time architecture for dynamic policy association during
proactive trust establishment. A content analysis engine accepts out-bound
content and determines its type using an arsenal of content analysis techniques.
The content type is mapped to a content disclosure policy that is enforced prior
to communicating the sensitive content to the intended recinient.
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transparently inserted into the dynamic method invocation process. Using interceptor
technology, a CORBA Object Request Broker (ORB) that supports dynamic method invocation
could be modified to identify sensitive content and establish trust before invoking a remote
method with method arguments that include sensitive content. A browser plug-in or a trusted
proxy server could intercept client requests and determine if the content is sensitive so that
additional trust should be established in the server before forwarding the request. Servlet
technology [13] is another vehicle for developing a general-purpose content-analysis engine
capable of wide deployment in web architectures. A proxy server is configurable so that it can
sit at the edge of the network inside a firewall and provide consistent, mandatory content
disclosure policy association for an entire organization. The same functionality could be
embedded in an application-level gateway firewall. The proxy server or firewall approach eases
administrative overhead, as it does not rely on clients configuring their local environment or
require the installation of additional software on each machine. It also permits transparent
interception of all outgoing requests, potentially dramatically improving the controls
organizations and households have over their sensitive content. However, the overhead of
examining each request could be prohibitive. A browser plug-in offers similar functionality, but
at the individual browser level. This would allow individual users fine-grained control over their
personal content at the cost of more administrative overhead.

One difficult problem is to recognize the meaning of the content and map that meaning to the
corresponding policy specification governing disclosure of the content. An approach to solving
this problem is as follows. First, evaluate existing publicly available implementations of
techniques for determining the meaning of content such as pattern matching, object-oriented type
information, semi-structured data, and natural language processing. Second, compare their
suitability for inclusion in the content analysis engine in terms of accuracy and speed in
determining the meaning of content. The focus of this effort would not be on developing new
methods for understanding the semantics of content. It would be useful to create a performance
model for content analysis that can be used to predict the costs and overhead for a given set of
classification categories and content.

The trust establishment architecture for sensitive content must be highly scalable in terms of
administration and runtime performance. To provide administrative scalability, the architecture
will leverage a role-based access control model [23]. Roles can be thought of as the intensional
analogue to the extensional groups widely used for access control in file systems. The process
for protecting sensitive content at runtime proceeds as follows. First, a content-analysis engine
maps sensitive content to a role-based authorization policy associated with the content. The
policy specifies the roles to which outside parties must authenticate in order to receive the
content. Next, the appropriate authentication policy information in terms of credentials is
combined with the role expression to be sent to the trust establishment agent that represents the
server.

Different administrators, even across organizational boundaries, can manage role definitions
in terms of credentials and manage content disclosure policies in terms of roles. This separation
of roles and credentials improves administrative scalability. This isolation of credentials within
authorization policies also allows our results to be utilized to protect the exchange of sensitive
content in systems where the entities are familiar to one another and credentials are not used.
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Scalability is also important for managing policy information. Some policies will be shared
across many users. Rather than replicate policy data, references to policies could allow policy
updates to be immediately reflected in the runtime environment. The separation of policy
information into role expressions for authorization and authentication policies in terms of
credentials allows the authentication policies to be distributed across different locations and
accessed on demand. For instance, a government agency may be responsible for specifying the
authentication policy for US citizens and the US Post Office may specify the authentication
policy for a US resident. When an authorization policy includes both of these roles, the security
agent that is proactively establishing trust could gather the authorization policies on demand in
order to submit them to the server. The resulting increase in ease of administration must be
weighed against the increased runtime costs. In sum, administrative scalability will be enabled
through role-based authorization policies and distributed authentication policies.

2. Determining an appropriate trust negotiation agent

Previous work in trust negotiation did not need to address the issue of determining the trust
negotiation agent with which to initiate a negotiation. The server reacted to a client request for
service and initiated a trust negotiation with that client. Proactive trust establishment cannot
leverage that advantage because the negotiation must take place in advance of the first contact
for service. Standard conventions need to be adopted that prescribe the relationship between a
service and the associated trust establishment agent representing the service. The solution cannot
require clients to disclose, even inadvertently, sensitive information about the service request
they intend to submit. There are several ways this could be done using existing technology.
Further, solutions to this problem must scale as the number of clients and servers grows. The
administrative overhead must not become a detriment to practical deployment. Also,
interoperability is important. For example, any CORBA client ought to be able to negotiate with
any CORBA server, regardless of the vendor. Timely research in this area will be able to
influence future standards.

To find the appropriate trust negotiation agent, object-oriented systems such as CORBA and
Java could provide a standard interface where calls could be made prior to invoking a method
with sensitive argument values. Objects needing to provide proactive trust establishment could
inherit from a proactive trust establishment class and support that interface. If the method name
is standardized, client code that dispatches dynamic method invocations could examine the
object definitions and determine at run time if the object supports an interface for proactive trust
establishment, and invoke it first before invoking a method accepting sensitive content as an
argument.

A web server could support trust establishment in advance of a sensitive request in several
ways. First, a new HTTP message type could be introduced for the purpose of establishing trust
in the web server prior to making a specific request of the server. Second, a new servlet API
could be introduced for the purpose of proactive trust establishment. Third, the TLS/SSL
protocol [9] [11] could be enhanced to support a more sophisticated version of server
authentication that supports trust negotiation rather than the limited client/server authentication it
supports today. Fourth, servers can provide a standardized directory service where clients obtain
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a reference to the authorized trust establishment agent for a given service. This will allow
greater flexibility and local autonomy at the overhead of a directory lookup.
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1. The Nature of the Deliverables

The tangible deliverables for this project took the form of written communication with
William Winsborough at NAI, plus two documents written by Professor Winslett, her
PhD student Ting Yu who was supported by this grant, and coauthors. These documents
are listed below. They are available over the web, and are summarized briefly in the
sections that follow.

T. Yu, M. Winslett, and K. E. Seamons, "Interoperable Strategies in Automated Trust
Negotiation," accepted to the ACM Conference on Computer and Communications
Security, 2001. Available on line at http:/drl.cs.uiuc.edu/ccs200] .ps.

T. Yu, M. Winslett, and K. E. Seamons, extended version of "Interoperable Strategies in
Automated Trust Negotiation." This extended version will be the basis for a journal
paper submission this fall. Available on line at http://drl.cs.uiuc.edu/nai_report.ps.

2. Research Results

The goal of this subcontract was to address a bothersome aspect of all the trust
negotiation strategies proposed to date, including our own proposals: they would not
interoperate. In other words, two parties had to use the exact same negotiation strategy,
if they were to have any hope of negotiating trust. Our goal was to remove this
restriction, by coming up with classes of interoperable trust negotiation strategies. We
did this in the paper that has just been accepted to CCS 2001. (The current version of the
paper is the submitted version, not the final version (due August 15, 2001). Because
CCS 2001 reviewing was double-blind, no author names appear on the submitted version
of the paper. The actual authors are Ting Yu, Marianne Winslett, and Kent E. Seamons.)
In this paper, we present two large classes of negotiation strategies with the property that
negotiation participants can pick any two strategies belonging to the same class, and be
assured of correct interoperation. We explore many interesting formal properties of the
new strategy classes in this paper, whose abstract is reproduced below.

Automated trust negotiation is an approach to establishing trust between strangers through the exchange
of digital credentials and the use of access control policies that specify what combinations of credentials a
stranger must disclose in order to gain access to each local service or credential. We introduce the
concept of a trust negotiation protocol, which defines the ordering of messages and the type of information
messages will contain. To carry out trust negotiation, a party pairs its negotiation protocol with a trust
negotiation strategy that controls the exact content of the messages, i.e., which credentials to disclose,
when o disclose them, and when to terminate a negotiation. There are a huge number of possible
strategies for negotiating trust, each with different properties with respect to speed of negotiations and
caution in giving out credentials and policies. In the autonomous world of the Internet, entities will want
the freedom to choose negotiation strategies that meet their own goals, which means that two strangers
who negotiate trust will often not use the same strategy. To date, only a tiny fraction of the space of
possible negotiation strategies has been explored, and no two of the strategies proposed so far will
interoperate. In this paper, we define a large set of strategies called the disclosure tree sirategy (DTS)
Jamily. Then we prove that if two parties each choose strategies from the DTS family, then they will be
able to negotiate trust as well as if they were both using the same strategy. Further, they can change
strategies at any point during negotiation. We also show that the DTS family is closed, i.e., any strategy
that can interoperate with every strategy in the DTS family must also be a member of the DTS family. We
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also give examples of practical strategies that belong to the DTS family and fit within the TrustBuilder
architecture and protocol for trust negotiation.

The CCS 2001 paper was written for single-level policies; in other words, it did not
handle policy graphs, a mechanism that can be used to protect sensitive access-policy
content. In fact, it would not be possible to squeeze policy graphs into the CCS 2001
submission, which was already bursting at the seams. The only suitable venue for the
extension of the CCS 2001 paper to policy graphs is a journal submission. We have a
draft of this submission, obtained by adding several new sections to the end of the paper,
extending the definitions and results to apply to policy graphs. Before this paper can be
submitted to a journal, it needs three improvements. First, the English in the new
sections must be polished, and a new sentence added to the abstract, mentioning the
extension to policy graphs. Second, a large and realistic example that uses policy graphs,
rather than single-level policies, must be added to the paper. Third, a description of the
experimental implementation of the approach needs to be added. This implementation of
the TrustBuilder framework for trust negotiation is being done by our colleague Kent
Seamons at Brigham Young University, and the implementation is being built this
summer. While the paper's focus will remain theoretical, we believe that a journal
submission needs to have at least a small practical component. When the paper is ready,
we plan to send it to one of the society Transactions journals. The work will be
completed under a follow-on subcontract through BYU, for a DARPA grant administered
by WPAFB; and by another follow-on subcontract through BYU, for a SPAWAR grant.
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Appendix E

TrustBuilder: Middleware to Enable
Trust Negotiation Strategy Interoperability

ABSTRACT

Automated trust negotiation is a new approach to establishing trust between strangers through the exchange
of digital credentials and the use of access control policies that specify what combinations of credentials a
stranger must disclose in order to gain access to each local service or credential. We say that a trust
negotiation protocol defines the ordering of messages and the type of information messages will contain, and a
trust negotiation strategy controls the exact content of the messages, i.e., which credentials to disclose, when to
disclose them, and when to terminate a negotiation. There are a huge number of possible strategies for
negotiating trust, each with different properties with respect to speed of negotiations and caution in giving out
credentials and security policies. In the autonomous world of the Internet, entities will want the freedom to
choose negotiation strategies that meet their own goals, which means that two strangers who negotiate trust will
often not use the same strategy. To date, only a tiny fraction of the space of possible negotiation strategies has
been explored, and no two of the strategies proposed so far will interoperate. In this paper, we present a trust
negotiation protocol, TrustBuilder, that acts as middleware to allow two parties to independently select their
negotiation strategies. We prove that TrustBuilder allows a very large class of trust negotiation strategies to
interoperate in a safe and complete manner. We also present three new families of trust negotiation strategies,
demonstrate the interoperability of two of them within TrustBuilder, and show that the third family discloses as
little sensitive information as possible, in a certain sense, as any strategy that can be used with TrustBuilder.

1. Introduction

With billions of users on the Internet, most interactions will occur between strangers, i.e., entities that have no
pre-existing relationship and may not share a common security domain. In order for strangers to conduct secure
transactions, a sufficient level of mutual trust must be established to the satisfaction of both parties. When an
interaction requires that mutual trust be established, the identity of the participants (e.g., their social security
number, fingerprint, institutional tax ID) will often be irrelevant to determining whether or not they should be
trusted. Instead, the properties of the participants will be most relevant. For example, a service may screen
potential clients based on their employment status, citizenship, age, group membership, or some other property.
Traditional security approaches based on identity require a new client to pre-register with the service, in order to
obtain a local login, capability, or credential before requesting service; but the exact same problem arises when
the client needs to prove on-line that he, she, or it is eligible to register with the service. Further, the
inconvenience of off-line and even on-line manual pre-registration can be a deterrent to clients and a costly
expense for servers, who must record information about all registered clients. A less costly, more scalable
approach that allows automatic on-line pre-registration, or does away entirely with the need for pre-registration,
will provide a significant boon to e-commerce in the future, by allowing substantial growth in the number of
sensitive business processes that can be accomplished on line. We believe that automated trust establishment is
such a solution.

With automated trust establishment, strangers establish trust by exchanging digital credentials that provide
each participant with information from what others have to say about their counterpart. Digital credentials are
the on-line analogues of paper credentials that people carry in their wallets: digitally signed assertions by a
credential issuer about the credential owner. A credential is signed using the issuer’s private key and can be
verified using the issuer’s public key. A credential describes one or more attributes of the owner, using attribute
name/value pairs to describe properties of the owner asserted by the issuer. Each credential also contains the
public key of the credential owner. The owner can use the corresponding private key to answer challenges or
otherwise demonstrate ownership of the credential. The owner can also use the private key to sign another
credential, owned by a third entity.
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Thus, credentials may be combined into chains, where the owner of one credential is the issuer of the next
credential in the chain. Credential chains permit one entity to trace a web of trust from a known entity, the
issuer of the first credential in the chain, to the submitting entity in which trust needs to be established. Multiple
chains can be submitted to demonstrate additional properties of the submitting entity and its relationships with
known entities. For example, one credential chain might be used to establish that the server is a member of the
Better Business Bureau of the USA and another chain might be used to demonstrate that the server has agreed to
safeguard private information.

While some resources are freely available to all, many require protection from unauthorized access. These
“protected” resources should be governed by access control policies that specify the requirements to be satisfied
in order to be granted access. Access control policies can be used for a wide variety of protected resources, such
as services accessed through URLs, roles in role-based access control systems, and capabilities in capability-
based systems. Since credentials themselves, and even access control policies, can contain sensitive information,
they can also be viewed as resources whose disclosure will often also be governed by access control policies.

2. Trust negotiation

In our vision of the future of automated trust establishment, the bulk of the interactions between strangers will
occur between software agents acting autonomously on behalf of human users. High-level policy directives that
are established a priori by users and institutions will control the trust decisions made by software agents. These
policies must adapt to a changing environment in cases of emergency or other unexpected events. These
policies must be both easy to create and easy to administer. Common, proven policies will be shared among
communities with similar interests and intentions. Changes to policy must proliferate rapidly through the
networking infrastructure when required in order to respond to attacks or to changing security requirements.

In our approach to automated trust establishment, trust is established incrementally by exchanging credentials
and requests for credentials, an iterative process known as frust negotiation. Different negotiation strategies
determine when and how credentials are disclosed; many strategies will require that access control policies be
mobile, that is, that the policies themselves, or some distillation of the policies, be sent to the other party in a
negotiation, so that the other party can understand the requirements for gaining access to the desired resource.
Credentials and policies may both contain sensitive data. Depending on the degree and nature of that sensitivity,
different negotiation strategies may be appropriate in different situations.

Figure 1 presents an architecture for trust negotiation. Each participant in the negotiation has an associated
security agent that manages the negotiation. The security agent mediates access to local protected resources,
such as services, credentials, and access control policies. We say a credential or access control policy is
disclosed if it has been sent to the other party in the negotiation. Disclosure of protected resources is governed
by access control policies. During a negotiation, the security agent makes use of a local decision engine that
accepts access control policies and credentials. Access control policies for local resources specify credentials
that the other negotiation participant must provide in order to obtain access to the resource. The security agent
receives credentials from the other participant and checks to see if the relevant access control policies are
satisfied. The agent also requests credentials from the other party that will advance the negotiation toward the
goal of granting access to the protected resource. The architecture in figure 1 supports a single protocol for
establishing trust, and assumes there will be a variety of negotiation strategies that must be supported.

As noted above, when an access control policy P contains sensitive information, then P itself requires
protection in the form of an access control policy for access to P. Such a situation requires that trust be
established gradually. For example, a client interacting with an unfamiliar web server may request to see
credentials that attest to the server’s handling of private information as well as certified security practices during
the negotiation prior to disclosing further requests that the client considers sensitive, such as an access control
policy that specifies the combination of credentials that the client requires for access to a business process that
the client considers a trade secret.
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Figure 1. An architecture for automated trust negotiation. A security agent that manages local protected resources and their
associated access control policies represents each negotiation participant. TrustBuilder provides the necessary middleware
support to security agents to enable negotiation strategy interoperability.

2.1 Trust negotiation protocols and strategies

While a frust negotiation protocol defines the ordering of messages and the type of information messages
will contain, a frust negotiation strategy controls the exact content of the messages, i.e., which credentials to
disclose, when to disclose them, and when to terminate a negotiation. All trust negotiation strategies share the
goal of building trust through an exchange of digital credentials that leads to obtaining access to a protected
resource. Once enough trust has been established that a particular credential can be disclosed to the other party,
a local negotiation strategy must determine whether the credential is relevant to the current stage of the
negotiation. Different negotiation strategies will use different definitions of relevance, involving tradeoffs
between computational cost, the length of the negotiation, and the number of disclosures.

Another dimension of variation is whether both parties must use the same strategy, for a successful
negotiation. As discussed in the Related Work section, all of the prior work in trust negotiation assumes both
parties adopt the same negotiation strategy. Furthermore, no two of the trust negotiation protocols and strategies
proposed so far in the literature will interoperate. If two strangers needing to negotiate trust had each adopted a
different one of these previously proposed strategies, they would be incapable of successfully negotiating trust,
even if they had the requisite credentials to do so. Obviously this is impractical in the freewheeling world of the
Internet, with no centralized authorities to contravene autonomy.

Lack of strategy interoperability is not the only impediment to automated trust establishment. The trust
negotiation architecture shown in figure 1 includes an arrow from local access control policies to remote
credentials, to indicate how local policies describe remote credentials. During a negotiation, each party may
disclose policy information to the other participant that will serve as a request for credentials that are relevant to
the negotiation. It is unlikely that a single language for specifying policies and requests for credentials will
emerge as the lingua franca for trust negotiation. Instead, middleware that supports trust negotiation, as well as
the trust strategies themselves, must be language independent in order to facilitate trust negotiation between a
wide range of participants.

From the handful of trust negotiation strategies proposed so far in the literature, it is clear that there are
endless possible variations in how to negotiate trust. Rather than exploring the space of all possible strategies
one strategy (conference paper) at a time, it would be more efficient and meaningful to characterize whole
groups of strategies at once and design protocols encompassing support for a broad range of potential strategies
and ensuring their interoperability.

In this paper, we present TrustBuilder, a strategy-independent, language-independent trust negotiation
protocol. We introduce three new families of trust negotiation strategies that can interoperate within
TrustBuilder, and explore their properties.
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3. Policies and policy graphs

When we step back to formalize the concepts of credentials and access control policies, we see a need for a
more abstract representation of the information contained in credentials and policies, free of implementation
details such as encryption protocols and data representation formats. In our work, we assume that the
information contained in access control policies (policies, for short) and credentials can be expressed as finite
sets of statements in a formal language with a well-defined semantics. Mathematical logic is well-suited to this
purpose. For convenience, we will assume that the original language allows us to describe the meaning of a set
of statements as the set of all models that satisfy the set of statements, in the usual logical sense. We say that a
set X of statements satisfies a set of statements P if and only if P is true in all models of X.

The layers of access control policies used to guard a resource during gradual trust establishment can be
represented as an access control policy graph (policy graph, for short). In this paper, a protected resource can
be a service, a policy, or a credential. A policy graph for a protected resource R is a finite directed acyclic graph
with a single source node .S and a single sink R. (For simplicity, we assume that the name of a node is the name
of the resource it represents.) All the nodes except R represent policies that specify the properties that a
negotiation participant may be required to demonstrate in order to gain access to R. Every node in the graph
except R is called a policy node. Each sensitive credential and service will have its own separate policy graph.
Each policy node in a policy graph G implicitly also has its own protective graph---the maximum subgraph of G
for which that policy node is the sole sink. Example policy graphs are given in the Appendix; their meaning
will be discussed later.

Ordinary logic languages can be extended for use as policy languages, by extending the semantics of the
language so that the meaning of “the set X of statements satisfies the policy at policy graph node N is defined
with respect to a path through the policy graph to node N, rather than only the statements in the policy at N.
This is because the safety of the disclosure of a resource may depend on the simultaneous satisfaction of many
access control policies, and these policies may need to share references to variables. For example, one potential
policy representation language is first-order logic without quantifiers or negation, with the following semantics:
suppose that a party would like to know if it would be safe to disclose policy P,, i.e., whether P, is satisfied by
the set W of credentials disclosed so far by the other party. W satisfies P, if and only if in P,’s policy graph,
there is a path Py, ..., P, from the source of the graph to P, such that if Xj, ..., X,, are the free variables in
policies Py, ..., P,;, then W satisfies the formula 3X; ..3X,, (P A ... A P,;) under the usual first-order
semantics. While the policies in a single policy graph should be written in a single language, it is perfectly
acceptable for different policy graphs to use different languages.

For the remainder of the paper, we require that the language used to represent policies and credentials be
propositional, with the semantics that the policy at a policy node is satisfied by a set of formulas W if and only if
there is a path from the source of the graph to that policy node, such that all the formulas in all the policy bodies
along that path are true in all models of W. For purely practical reasons, we also require that the language be
monotonic, i.e., if a set of statements X satisfies P, then any superset of X will also satisfy P; that way, once a
negotiation strategy has determined that the credentials disclosed by a participant satisfy the policy at a
particular node, the strategy knows that that same policy will be satisfied for the rest of the negation, and does
not have to be rechecked. Example suitable languages are propositional logic without negation, with the usual
semantics; and propositional datalog [1], with the usual datalog semantics. These languages will already be
familiar to the reader, and their semantics do not need modification (other than a restriction to monotonic
subsets) for use with policy graphs. This simplicity allows us to focus on the properties of the negotiation
protocol and strategy rather than on explanations of our handling of variables, negation, graph semantics, and
how to determine whether a credential appears in a formula. Non-propositional monotonic languages are also
readily available, e.g., in the work on stable models and the well-founded semantics from the logic programming
community [1].

To prove that it satisfies the policy at node IV, a negotiation participant will submit sets of credentials, whose
union forms the set X that must satisfy /V. For convenience, we will often say that a negotiation participant
satisfies a policy node N (policy N, for short) if the set X of credentials provided so far by the participant
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satisfies the policy at node N. A node N can have the empty set of formulas as its policy---the easiest policy to
satisfy.

As mentioned earlier, if a negotiating party sends one of its credentials or policies to the other party, we say
that that resource has been disclosed. If trust negotiation succeeds and a party is allowed to access the originally
requested service R, for convenience we will also say that R has been disclosed.  Algorithms for trust
negotiation must ensure that every disclosure is safe, i.e., that it does not violate the policies put in place to
protect the disclosed resource. Under our semantics for policy graphs, it is always safe to disclose the source
node of a policy graph (i.e., to disclose the body of the policy at that node, along with an indication of which
graph the node comes from). A party can safely disclose the body of a non-source policy node NV in a policy
graph if and only if there is a directed path from S to one of N’s parents in that graph, such that the other
negotiation participant satisfies § with respect to that path. (We call such a path an authorized path to N, and
say that IV is unlocked. By convention, the source node of a policy graph is always unlocked.) R itself can be
safely disclosed once there is an authorized path to R. Finally, the disclosure of an edge between two policy
graph nodes is safe if the edge leads between two nodes that have been disclosed, or if the edge leads directly to
the sink of the graph. If every disclosure in a negotiation is safe, we say that the negotiation itself is safe. The
goal of gradual trust establishment is to find a sequence of safe disclosures that culminates in the disclosure of
R. The assumption of language monotonicity means that once a node NV is unlocked, the policy or credential
associated with N can safely be disclosed at any point in the remainder of the negotiation.

For trust negotiation to be ubiquitous, there must be widely understood languages for representing policies
and credentials. Actual credentials will be encrypted objects that follow a specified format of fields and field
values. To reason about credentials at the level of a strategy engine, the actual credential must be translated into
the formal language(s) used to represent the policy(s) in which that credential occurs. The translation must be
the same for both negotiating parties, so that both parties can agree on whether a particular set of credentials
satisfies a particular policy. A language into which credentials are translated need not resemble the credential
format; for example, for a simple policy that does not need the extra expressive power of first-order logic, it
would be perfectly acceptable to translate a driver’s license credential from Illinois into the propositional
constant /L, meaning that the negotiating party has a driver’s license from Illinois. In the context of first-order
logic, the same credential could be translated quite differently, e.g., driversLicense(X) and state(X) = “Illinois”
and name(X) = “Jane Doe” and dateOfBirth(X) = “1/1/2000".

As just pointed out, an actual credential will be an encrypted object that looks nothing like the translated
version of that credential. In our pseudocode, however, the same single propositional symbol is used both to
denote the credential itself (e.g., in statements such as “send C to the other party” and “examine C’s policy
graph”), and the translated version of that credential that occurs in policies (e.g., (C A C)) v C;). We draw
attention to this point because software would not confuse the two, but a human reader might. We also note that
in practice, a single credential might translate into a formula involving several propositional symbols; our
pseudocode would need extension to cover this possibility.

In general, negotiation strategies assume that both participants bargain in good faith. A service provider or
client might wish to start its trust negotiation by verifying that its negotiation partner is using a negotiation
package that has been certified by an appropriate inspection service, giving confidence that the negotiations will
adhere to certain ethical guidelines.

One approach to negotiating trust between strangers that is not considered in this paper is the reliance on a
trusted third party to determine whether or not two parties trust each other, according to the policies they have
established. If the two parties are willing to disclose their policies and credentials to a trusted third party, that
party could use the approach outlined in this paper to determine whether or not the two parties can trust one
another. The advantage of this approach would be that the two parties would not disclose sensitive policy and
credential information to one another. However, it would require two strangers to agree on a trusted third party.

4. TrustBuilder: A strategy-independent protocol for negotiating trust

In this section we present and analyze a strategy-independent, language-independent protocol for trust
negotiation that uses the policy graphs, language, credentials, and credential translations described in the
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previous section. We assume that the credentials and policies do not change during a negotiation, and that all
policies are satisfiable.

In TrustBuilder, a stateful protocol for trust negotiation, the two parties take turns disclosing policy nodes,
credentials, and edges to one another. In this paper, we have eliminated enough features of TrustBuilder to make
our discussion fit within the page limit for the conference; we call the resulting system Oakland TrustBuilder
(OTB for short). OTB differs from TrustBuilder in the following ways:

1. The TrustBuilder environment allows the two parties to agree on what constitutes failure of the
negotiation: 1, 2, 3, or 4 empty disclosure messages in a row. In OTB, the negotiations fail as soon as a
single empty disclosure message has been sent.

2. The TrustBuilder environment lets the two parties decide whether they will disclose all satisfied
unlocked policies, which has ramifications for policy caching and reuse. In OTB, satisfied unlocked
policies do not have to be disclosed.

3. The TrustBuilder environment allows the two parties to decide in advance on the acceptable set of
languages used to express policies in policy graphs. This allows a party to store versions of the
(intuitively) same policy in several different languages, to enable negotiations with parties that
understand a broad array of languages. In OTB, we assume that a single language is used to express all
policies (any monotonic subset of propositional logic), and that this language is chosen before
negotiations start.

4. The TrustBuilder environment allows the two parties to decide what kind of edge disclosures to make.
The options are: do/do not disclose only those edges that actually appear in a local policy graph; do/do
not disclose an edge between a disclosed policy node and a locked policy graph sink node; do/do not
disclose every edge (N, M), such that N and M are local disclosed policy nodes, and there is a directed
path from N to M in a local policy graph. OTB does not allow the first option, which only makes sense
when all satisfied policies are disclosed; and OTB assumes that the parties have agreed on their edge
disclosure options before negotiations start. Each party can use a different edge disclosure option.

The pseudocode for OTB is given in figure 2. When a client requests a service, the server first checks to see

if the service is freely available, i.e., if its access control policies are always satisfied. If so, the client is
immediately granted access to the server. Otherwise, the server sets the global variable RequestedService to

OTB_handle_disclosure_message(Credentials, Policies, Edges)

Input: Sets Credentials, Policies, and Edges contain the newly disclosed remote credentials, remote policy nodes, and remote
edges from the other party.

OTB_check_for_failure(Credentials, Policies, Edges). // Stop negotiating, if appropriate.

OTB_find_something_to_disclose(Credentials, Policies, Edges).

End of OTB_handle_disclosure_message.

OTB_find_something_to_disclose (Credentials, Policies, Edges)
/1 First, let the strategy engine decide what the new disclosures should be.
(Credentials, Policies, Edges) = Local_strategy_engine(Credentials, Policies, Edges).
Send a disclosure message containing (Credentials, Policies, Edges) to the other party.
OTB_check_for_failure(Credentials, Policies, Edges).  // Stop negotiating, if appropriate.
End of OTB_find_something_to_disclose.

OTB_check_for_failure (Credentials, Policies, Edges)
If Credentials, Policies, and Edges are all empty sets,

Then negotiations have failed. Stop negotiating and exit.
End of OTB_check_for_failure.

Figure 2. Pseudocode for the OTB protocol for trust negotiation.

designate the requested service. This global variable is used to determine whether trust negotiation has
succeeded. The server then begins trust negotiation by calling OTB_find_something_to disclose(d, &, ©).
OTB_find_something_to_disclose( ) calls the local strategy engine to decide what to disclose first, typically the
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source node of the policy graph for RequestedService. More generally, it is the strategy engine’s job to
determine what is unlocked (using calls to the language-dependent modules) and decide what to disclose at each
round of the negotiation. OTB_find_something_to_disclose( ) sends the new disclosures to the other party and
then checks to see if the negotiation has failed.

The party receiving a disclosure message handles it using OTB_handle_disclosure_message( ),
OTB_handle_disclosure_message( ) first checks to see if negotiations have failed (i.e., an empty disclosure
message) and then updates the state of the negotiation by recording the newly disclosed credentials, policies,
and edges. Then the routine calls OTB_find_something_to_disclose( ) to determine what to disclose next. The
process repeats until negotiations fail or RequestedService itself is disclosed. Examples of OTB in action are
given in the Appendix; the examples rely on the instantiations of the strategy engine described in the next
section.

Credential and edge disclosures are straightforward. Policy node disclosures are more complex; each must
include the body of the policy associated with the node, tell what credential the node is protecting, and give a
unique identifier to the node, so that its associated edges can be disclosed. Our pseudocode assumes that all this
information is available for each disclosed policy node, without giving any detail about the syntax used for the
policy node disclosure.

OTB never overrules a disclosure recommendation made by a strategy engine; fancier protocols might
second-guess a disclosure recommendation, compare suggestions from multiple strategy engines, or change
strategy engines during a negotiation. Protocols that do this must record the state of the negotiations, rather than
relying on the strategy engines to do so.

Not every negotiation strategy is suitable for use with every negotiation protocol; each protocol must have a
set of criteria that must be satisfied by every strategy engine used with the protocol. A strategy engine is
approved for OTB if the strategy engine satisfies the following criteria:

1. Each disclosure suggested by the strategy engine must be safe. (It follows that every OTB disclosure is
safe.)

2. The strategy engine must be complete for OTB with the selected edge disclosure option. The
completeness criteria for OTB are very complex, and we defer their presentation to Section 6.2.

3. The strategy engine must never suggest the disclosure of the same credential, policy node, or edge
twice.

4. The strategy engine must immediately disclose exactly those edges that are safe to disclose and that,
according to the chosen edge disclosure option, can be disclosed.

Theorem 1. Suppose two negotiating parties use OTB with approved strategy engines S; and S,
respectively. Then the two parties will eventually disclose the requested service if and only if there is a safe
sequence of credential disclosures culminating in the disclosure of the requested service. ¢

Theorem 2. Let cl be the total number of nodes in the policy graphs for the credentials possessed by the
client, and let c2 be the total number of nodes in the policy graphs for the credentials possessed by the server,
plus the number of nodes in the policy graph for the originally requested service. Then a negotiation conducted
with OTB will always terminate after at most 2*c2 - 1 messages, if c2 < cl + 1, or after 2*cl + 2 messages, if
c2zcl+1. ¢

Because OTB never discloses the same item twice, the total size of all messages is limited to the size of the
stored policies and credentials of the two parties, plus the size of the empty final disclosure message, if any.

5. Language-dependent policy analysis routines

Strategy engines need language-dependent modules that can be called to find out whether a particular policy
node is unlocked by a certain set of credentials. For this purpose, we use a routine called
O_satisfied(PolicyNode, Credentials), where PolicyNode is a policy node and Credentials is the set of
credentials which should be used to try to unlock PolicyNode. O_satisfied( ) (the Oakland version of Satisfied)
is a strategy-independent, protocol-independent, language-dependent module that can check to see which policy
language is being used for this negotiation and call appropriate routines to interpret the body of a policy,
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translate credentials into that language, and test whether a policy node is unlocked. Because of our assumptions
about language monotonicity and immutability of credentials and policies, the implementation of O_satisfied( )
can cache information about which policy nodes are unlocked, if desired. The nature of the satisfiability test
depends on the semantics of the language, which in general must be defined over policy graphs, rather only over
single policies; thus O_satisfied( ) may need to traverse part of a policy graph, so its implementation does in
general depend on the data structure used to represent policy graphs. O_satisfied( ) can be used to see if remote
disclosed policy nodes are unlocked by certain sets of local credentials, and to see whether local policies are
unlocked by sets of remote disclosed credentials.

One other language-dependent routine, O_appears(PolicyNodes), is needed for this paper. O _appears( )
parses the policy of each node in PolicyNodes and returns the set of all credentials that appear in those policies.

The language-dependent aspects of trust negotiation can and should be confined to two small portions of the
trust negotiation system: (1) the routine that tests satisfaction and its helpers such as O_appears( ), and (2) the
routines that translate actual credentials into statements in the policy representation language.

6. Language-independent negotiation strategies

While all negotiation strategies share the goal of safely disclosing the originally requested service, they differ
in how they try to construct an authorized path to the node representing the service, how they define what
resources are relevant to that path, and how quickly they disclose unlocked relevant resources. Perhaps
surprisingly, it is perfectly reasonable for a party to disclose edges and policies that do not actually exist, to omit
disclosure of some edges and policies that do exist, within certain limits, and to disclose the policy for a
credential that the party does not possess. In this paper, we do not have room to present all the edge and policy
disclosure options, much less explore their surprisingly deep ramifications for OTB strategy engine
completeness criteria. Instead, in this paper we require parties to disclose the exact bodies of policies, disclose
no edges, and disclose policies only for credentials that they actually possess.

Negotiation strategies differ in how they manage the tradeoff between quickly obtaining access to the desired
service, and minimizing the disclosure of information. In general, the harder a strategy tries to minimize
disclosure, the more complex and computationally expensive it will be. Negotiation strategies that must work
with tight deadlines, limited power supplies, or limited communication ability will need to avoid the cleverness
used by other strategies to attempt to minimize disclosure. A strategy could measure “minimality” of disclosure
by counting the number of disclosed resources, using subset inclusion, adding up sensitivity weights assigned to
disclosable resources, minimizing the maximum sensitivity level of the disclosed resources, or many other
possibilities.

In the limited space of this conference paper, we cannot present and analyze very many strategy engines. We
will confine ourselves to two strategies and two families of strategies, none of which is equivalent to any
previously published negotiation strategy. The first, called Simple, is fast and free with its disclosures. The
second, NotSoSimple, is more conservative in its disclosures, and may take longer to choose its disclosures. The
families of strategies are called the Datalog Negotiation State Description strategies and the Derivation Tree
Strategies. Under certain assumptions, the members of the latter family are as stingy in their disclosures as it is
possible for any complete-for-OTB strategy to be. In fact, we use this family to define the completeness criteria
imposed by OTB on its strategy engines.

6.1 The Simple and NotSoSimple strategy engines

The Simple strategy engine, given in figure 3, discloses every unlocked local credential and every unlocked
policy node that protects a locked local credential. At startup, Simple puts the source nodes of all its policy
graphs into a queue, and then calls Simple_process_queue( ) to determine which policies in the queue are
actually satisfied. Any satisfied policy will have all its child policy nodes unlocked and added to the queue. Ifa
graph sink node is unlocked, the credential (or service, in the case of RequestedService) associated with that
node is disclosed. Simple uses a static variable called Boundary to remember what unlocked nodes that protect a
locked local credential may have locked children. After startup, Simple calls Simple_process_queue( ) with
every member of Boundary in the queue.
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The NotSoSimple strategy engine, given in figure 4, has the same overall structure as the Simple strategy
engine, and uses the same queue processing code. However, NotSoSimple takes additional steps to try to make
sure that its disclosures might actually move the negotiation closer to success. Rather than disclosing all
unlocked policies, NotSoSimple discloses only the innermost unlocked policies of credentials that appear in a

Simple_strategy_engine(Credentials, Policies, Edges)
/ Input: Credentials, Policies, and Edges are the newest disclosures from the other party. Credentials contains remote credentials, used to
// satisfy local policies. Policies contains remote policy graph nodes; those policies are to be satisfied using local credentials. Edges contains
/1 edges from remote policy graphs.
/1 Output: Three sets of local information: CredentiaisToDisclose, PoliciesToDisclose, and EdgesToDisclose.
/{ Philosophy: Disclose everything that is unlocked.
// The engine maintains its state using the static variables Boundary, RemoteCredentials, RemotePolicies, UnlockedLocalNodes,
/1 DisclosedLocalCredentials, and DisclosedLocalPolicies (all initialized to the empty set before negotiation starts).
/I Boundary is the set of all unlocked policy nodes that (as far as we know) have a locked child. RemoteCredentials and RemoiePolicies contain
// the disclosures made by the other parties. UnlockedLocalNodes records which local nodes we know to be unlocked, and
!l DisclosedLocalCredentials and DisclosedLocalPolicies record the local credentials and policy nodes, respectively, that have been disclosed.
RemoteCredentials = RemoteCredentials U Credentials. RemotePolicies = RemotePolicies \U Policies.
Create queue Queue containing every policy node in Boundary.
NewlyUnlockedSources = &.
If negotiations have just started,
Then add the source node of every local policy graph to Queue, UnlockedLocalNodes, Boundary, and NewlyUnlockedSources.
/ Now see if any of these policies are now satisfied.
(NewlyUnlockedSinks, NewlyUnlockedPolicies) = Simple_process_queue(Queue, RemoteCredentials, Boundary, LocalUnlockedNodes).
For each credential C such that the sink node N of its policy graph is in NewlyUnlockedSinks // Disclose all unlocked local credentials.
If C is not in DisclosedLocalCredentials, then add C to CredentialsToDisclose and DisclosedLocalCredentials.
For each member N of NewlyUnlockedPolicies w NewlyUnlockedSources I/ Disclose all unlocked policies.
If N is not in DisclosedLocalPolicies, then add N to PoliciesToDisclose and DisclosedLocalPolicies.
EdgesToDisclose = OTB_find_edges_to_disclose(CredentialsToDisclose, PoliciesToDisclose, DisclosedLocalCredentials, DisclosedLocalPolicies).
Return (CredentialsToDisclose, PoliciesToDisclose, EdgesToDisclose).
End of Simple_strategy _engine.

Simple_process_queue(Queue, Credentials, Frontier, UnlockedLocalNodes)
// Input: A queue of policy nodes whose policies might now be satisfied by Credentials.
/" Frontier is the set of all policy nodes that are unlocked and we think might now be satisfied.
// Output: The sets NewlyUnlockedSinks and NewFrontier, initially empty. Frontier and UnlockedLocalNodes will be updated.
Until Queue is empty
Remove a policy node N from the head of Queue.
If O_satisfied (N, Credentials) = true
Then // N’s policy is satisfied by the credentials, so N’s children are now unlocked.
Remove N from Frontier.
If N has an outedge to the sink of this policy graph,
Then // ' We have unlocked the credential at the sink of the graph, or unlocked RequestedService.
If the sink is the node representing RequestedService,
Then negotiations have succeeded. Exit and provide access to RequestedService.
Else /I Stop looking for authorized paths in the policy graph with sink N.
Add the sink node to NewlyUnlockedSinks and UnlockedLocalNodes.
Remove from Queue and Frontier all nodes from the same graph as V.
Else // N has children that are also policy nodes.
For each child NC of N
If NC isn’t already in UnlockedLocalNodes, add NC to Queue, UnlockedLocalNodes,
NewlyUnlockedPolicies, Frontier, and NewFrontier.
Return (NewlyUnlockedSinks, NewFrontier).
End of Simple_process_gqueue.

Figure 3. Pseudocode for the Simple strategy engine.
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policy disclosed by the other party. If the other party discloses enough credentials for there to be an authorized
path to the sink of a local policy graph containing policy nodes that Simple has disclosed, then Simple discloses
the credential protected by that policy graph, as long as disclosure of that local credential will allow at least one
additional disclosed remote policy P to be satisfied, and the remote credential C that is protected by P has still
not been disclosed. On the other hand, NotSoSimple never checks whether there is still a need for the remote
credential C to be disclosed; perhaps the local policy in which C appears has already been satisfied using other
disclosed remote credentials.

Simple and NotSoSimple ignore all disclosures of remote edges, and they both work with any local edge
disclosure option. They call the utility routine OTB_find_edges_to_disclose( ), supplied with OTB, to construct
their own edge disclosures. OTB_find edges_to_disclose( ) finds every local edge that can safely be disclosed,
has not yet been disclosed, and should be disclosed according to the chosen edge disclosure option. The
pseudocode for OTB_find_edges to_disclose( ) is very straightforward, and we do not present it here.

The Appendix contains a complete example of Simple (the client) negotiating with NotSoSimple (the server).

We jump the gun slightly and present a theorem that cannot be proved until we define the completeness

NSS_strategy_engine(Credentials, Policies, Edges)
/l Input: Credentials, Policies, and Edges are the newest disclosures from the other party. Credentials contains remote credentials, used to satisfy
/l local policies. Policies contains remote policy graph nodes; those policies are to be satisfied using local credentials.
/I Edges contains edges from remote policy graphs.
// Output: Three sets of local information: CredentialsToDisclose, PoliciesToDisclose, and EdgesToDisclose.
// The engine’s state is in the static variables /nnermost, RemoteCredentials, RemotePolicies, UnlockedLocalNodes, DisclosedLocalCredentials,
/I and DisclosedLocalPolicies (all initialized to the empty set before negotiation starts). RemoteCredentials and RemotePolicies contain the
/1 other party’s disclosures. UnlockedLocalNodes records which local nodes we know to be unlocked; DisclosedLocalCredentials and
/I DisclosedLocalPolicies record the local credentials and policy nodes, respectively, that have been disclosed. Innermost is the set of all innermost
// unlocked policy nodes in relevant local policy graphs that protect a locked credential.
RemoteCredentials = RemoteCredentials \w Credentials. RemotePolicies = RemotePolicies U Policies.
/] Does the other party now satisfy any additional local policies?
// --Perhaps, if the policy bodies contain a newly disclosed remote credential.
Create queue Quewe containing every policy node in [nnermost whose body contains a credential that appears in Credentials.
// --Perhaps, if negotiations are just starting.
If the local party owns RequestedService and the source node of RequestedService’s policy graph is not in UnlockedLocalNodes,
Then add the source node of RequestedService’s policy graph to Queue, UnlockedLocalNodes, Innermost, and NewlyUnlockedSources.
// --Perhaps, if the other party has just mentioned a local credential for the first time.
If there is any locally owned credential C such that C appears in Policies and the source node of C’s policy graph is not in UnlockedLocalNodes,
Then add the source node of C’s policy graph to Queue, UnlockedLocalNodes, Innermost, and NewlyUnlockedSources.
// Now see if any of these policies are now satisfied.
(NewlyUnlockedSinks, Newlnnermost) = Simple _process_queue(Queue, RemoteCredentials, Innermost, UnlockedLocalNodes).
For each policy node N in Innermost that comes from a graph with a policy node in Newinnermost or NewlyUnlockedSources,
If every path from N to the sink of the graph passes through another member of Innermost,
Then remove N from Innermost.
For each credential C whose policy graph sink is in NewlyUnlockedSinks
/I Disclose each unlocked local credential appearing in a disclosed remote policy, unless ...
Add C to CredentialsToDisclose.
DRP = the set containing all members N of DisclosedRemotePolicies such that O_satisfied(V, DisclosedCredentials) = false
and O_satisfied(V, DisclosedCredentials v CredentialsToDisclose) = true and the credential to whose
policy graph N belongs is not in DisclosedRemoteCredentials.
For each credential C in CredentialsToDisclose // ... unless that credential doesn’t help satisfy an additional policy.
If for all members N of DRP, O_satisfied(¥, DisclosedLocalCredentials union CredentialsToDisclose — {C}) = true,
Then remove C from CredentialsToDisclose.
DisclosedLocalCredentials = DisclosedLocalCredentials \u CredentialsToDisclose.
For each member N of Innermost // Disclose only the innermost unlocked policies from relevant policy graphs.
If N is not in DisclosedLocalPolicies,
Then add N to PoliciesToDisclose and DisclosedLocalPolicies.
EdgesToDisclose = OTB_find_edges_to_disclose(CredentialsToDisclose, PoliciesToDisclose, DisclosedLocalCredentials, DisclosedLocalPolicies).
Return (CredentialsToDisclose, PoliciesToDisclose, EdgesToDisclose).
End of NSS_strategy_engine.

Figure 4. Pseudocode for the NotSoSimple strategy engine.
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criteria for OTB’s strategy engines, in a later section.

Theorem 3. Simple and NotSoSimple are approved for use with OTB.

6.2 The Derivation Tree Strategies family of strategies, and completeness criteria for OTB

This section of the paper is particularly dense with definitions, theorems, and propositions. To ease the
reader’s path through the section, we begin by summarizing the section. The Derivation Tree Strategies (DTS)
family of strategies is inspired by the observation that policy graphs can be rewritten as datalog [1] formulas
containing special symbols to represent remote policies that have not yet been disclosed. Local and remote
credentials can also be represented as datalog statements. At a particular point in the negotiations, we will know
that the negotiation will definitely eventually succeed if we can derive R (the propositional symbol representing
the originally requested service) from a certain subset of the current set of datalog statements. Disclosures of
credentials and policies that do not occur in any derivation tree for R are completely unnecessary, as they can
never contribute to a successful negotiation; this means that negotiations must eventually fail if there is no
derivation tree for R. Further, many derivation trees are redundant and can be ignored entirely. The remaining
derivation trees can also give us minimum bounds on what must be disclosed next. These observations lead to a
definition of DTS and allow us to prove that under some mild restrictions, DTS is as stingy with its disclosures
as it is possible to be. We also use the ideas behind DTS to define what it means for a strategy engine to be
complete for OTB.

The datalog version of policies and credentials reflects only a single party’s view of the negotiation, not an
omniscient summary. Thus before we turn policies into datalog statements, we need to ensure that the remote
policy nodes and edges that have been disclosed so far form a connected policy graph. Up to this point in the
paper, we have been able to present results that do not depend on the option chosen for edge disclosure.
Unfortunately, the edge disclosure choice determines how we add enough edges and nodes to the disclosed
remote policy nodes and edges to form a connected graph, and we do not have enough space to explain how to
add edges and nodes for all the disclosure options. Thus we will only show how to add edges and nodes for the
case where no remote edges are disclosed. The results in this section also hold as stated for the other edge
disclosure options.

To turn the disclosed remote policy nodes into a properly formed policy graph when no remote edges are
being disclosed, first we add a remote policy graph sink node Sink for each remote credential appearing in a
local policy, and for the originally requested service, if it is not a local service. To match each Sink node,
introduce an additional remote node Source, whose policy is the empty set of formulas. We add edges from
Source to every disclosed remote policy node that belongs to that graph. Then for each disclosed remote policy
node IV, we introduce a single new hypothetical remote policy node M whose body is the empty set of formulas,
and add edges (V, M) and (M, Sink) to the graph. If there are no disclosed remote policy nodes for this graph,
then we create a hypothetical remote policy node O with an empty set of formulas as its body, and add edges
(Source, O0) and (O, Sink). The result is a properly formed policy graph---although quite different from the
version owned by the other party. Intuitively, the hypothetical policy nodes represent the fact that we really
don’t know what undisclosed policies the other party has. We place a hypothetical policy node at each point in
the policy graph where our access to Sink might be prevented by an unsatisfied, undisclosed remote policy. We
give each hypothetical node an empty policy body because that is the most optimistic assumption we can make--
-that we have already satisfied the undisclosed policy---and we want to consider every possible way to unlock
Sink. The second section of the Appendix gives an example of hypothetical nodes and every other construct in
this section.

Then, given the set of local and (locally-constructed) remote policy graphs, disclosed remote credentials, and
local credentials, we build the set of derivation trees by first rewriting that information as datalog statements:

1. Each local credential, remote credential, non-sink local policy graph node, and non-sink remote policy
node is represented by a unique propositional symbol. For convenience, we will use the node or
credential name as its symbol. The sink node of each policy graph must be represented by the same
symbol as the credential or service protected by that graph. For convenience, we assume that the
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originally requested service is named R. Source nodes for remote policy graphs will be named Source;,
Source,, etc., and hypothetical nodes will be named H;, H;, etc.

2. For each policy node N and each potential minimal satisfaction set' {Cj, ..., C,} of credentials for N,
include the statement “N «C; A... AC,” if N is the source node of the policy graph. If /V has a parent
node M in the policy graph, include the statement “N «~M ACj A... AC,”, for each parent M of N.

3. For each sink node C, and each parent N of C, include the statement “C «-N".

We call the resulting set of statements the Datalog Negotiation State Description (DNSD for short). The
Appendix gives an example DNSD and a set of derivation trees for a negotiation in progress. Derivation trees
show every way to derive R from the DNSD. Each derivation tree has R as the root node. R’s children are the
symbols in the DNSD rule used to derive R in that particular derivation. The children of R’s child NV are the
symbols in the body of the rule used to derive NV in that particular derivation, and so on. The leaves of the tree
are all rule heads with empty rule bodies (i.e., the policies that are always satisfied). If a tree does (resp. does
not) contain hypothetical policy nodes, we say that it is a hypothetical (resp. non-hypothetical) tree.

Note that we are not requiring that any strategy engine actually compute the set of derivation trees; rather, it
is an important mental exercise that will give us insight into the properties of all strategy engines that can work
successfully with OTB. Also note that the DNSD is specific to a particular party at a particular point in the
negotiation; the other party will have its own, often quite different, DNSD. Finally, note that as implied by the
S in its name, the DNSD for remote policy graphs can change with each new disclosure message from the other
party.

To reflect the disclosures that have already been made, we can semi-prune a derivation tree by pruning out all
subtrees rooted at a disclosed credential.

Theorem 4. If R has a non-hypothetical semi-pruned derivation tree, then there is a safe sequence of
credential disclosures culminating in the disclosure of R. If R has no derivation trees, there is no safe sequence
of disclosures terminated by the disclosure of R. #

Derivation trees tell us how we might succeed in disclosing R, but they do not directly tell us what to disclose
next. For this purpose, we define the set of prurned derivation trees: take each semi-pruned derivation tree, and
prune out every non-hypothetical policy node that is satisfied by the set of disclosed credentials. Also prune out
every hypothetical node that becomes a leaf in the pruned tree. Every leaf of a pruned derivation tree is an
undisclosed credential. Example pruned derivation trees are given in the Appendix.

We say that a pruned derivation tree has a qualifying leaf if it has a leaf that belongs to the other party and
that the other party might reasonably be expected to disclose. More precisely, a pruned derivation tree has a
qualifying leaf if and only if R is a leaf of the tree, or the tree has a leaf that is a remote undisclosed credential
and the nearest ancestor of that leaf that is a policy node (if such an ancestor exists) is a local disclosed policy
node. If a pruned derivation tree has a qualifying leaf, we say that the tree is a qualifying tree. (Note that as
always, all the disclosures must be safe; it is cheating to create a qualifying tree by making an unsafe
disclosure.) Intuitively, the pruning process tells us which policy nodes and credentials to disclose next.
Suppose we prune the derivation trees before deciding what to disclose. Then in each pruned tree that does not
already qualify, we must disclose an additional leaf (our local unlocked credentials) or local policy node (closest
ancestor of remote credentials in the tree) to make the tree qualify. Intuitively, a tree qualifies if the other party
can safely disclose something from the tree, and can tell that it would be to its advantage to make that
disclosure.

If T, is a qualifying pruned tree, we say that T, covers pruned derivation tree T, if, roughly speaking,
negotiation progress in T will inevitably lead to negotiation progress in T,. Covering trees are important for the
case where a policy in tree T; entails a policy in T;. Often, it is not necessary to make T be a qualifying tree,
e.g., by disclosing the entailing policy in T3, because when the other party makes its next round of disclosures to
qualify their version(s) of T, those disclosures will automatically lead to progress with respect to the entailing
policy in T;. For example, at the beginning of negotiations, perhaps the policy graph for R is a diamond whose

"Hfaset X={Cy, ..., C.} of credentials unlocks a policy node N, and no proper subset of X has this property, then we say that X is a minimal satisfaction
set for V.
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source node’s policy is the empty set of formulas, and the two side points of the diamond are policies Py: C; v
C; and P;: C;. The server will have two derivation trees containing P; and one derivation tree containing P;. It
suffices for the server to disclose P;, thereby qualifying the two trees containing P,, because if the other party
creates a qualifying leaf in their own derivation trees that contain P,, the other party will either have disclosed a
policy for C;, or will not possess C;. If the other party does not possess C;, then all derivation trees containing
P; are irrelevant; and if the other party discloses a policy for Cj, then the other party has cleared the way for
future negotiation progress in T by the local party. (If P; were C; A C,, then the local party could disclose just
P;; but if we have P;: C; A C; and P;: C; v C;, then the local party would need to disclose both P; and P;, even
though in this case one of the three trees is covered by another tree.)

More precisely, T; covers T, if every leaf of T; is also a leaf of T, and either (a) every hypothetical node of
T, is also a node of T; or (b) every remote credential that appears in any disclosed local policy either (i) has
been disclosed, or (ii) occurs in at least one place in T; where it has no hypothetical ancestor. Requirements (a)
and (b) are present to cover the possibility that the other party does not consider T; to be a viable tree, because
of information hidden behind nodes that are hypothetical in T; but are not hypothetical in the remote party’s
version of T7.

All those definitions have led to something exciting: we can finally give the completeness criterion for OTB’s
strategy engines! Suppose that a negotiating party has just sent a disclosure message. We say that the party’s
disclosure was complete if it satisfies the following: if there are any non-hypothetical semi-pruned derivation
trees for this party immediately after the disclosure, then we require that the party have at least one non-
hypothetical semi-pruned derivation tree that, after pruning, is a qualifying tree. Further, if the party has no
non-hypothetical semi-pruned derivation trees immediately after the disclosure, then we require that every
pruned derivation tree for this party have a qualifying leaf or be covered by a qualifying pruned tree
immediately after the disclosure. Finally, we say that a strategy engine is complete for OTB if every disclosure
that it makes is complete.

This is a good moment to recall Theorem 1, which said that negotiations using OTB with approved strategy
engines would always succeed, if success was theoretically possible. We are leading up to another important
theorem, showing that (almost) every strategy engine that isn’t complete for OTB can cause negotiations to fail
when success is possible.

At a particular point in an ongoing negotiation, suppose that a party is about to send out a disclosure message.
Consider the set D of all possible safe and complete disclosure messages that the party could send out at this
point. Then remove from D each disclosure message whose disclosures are a proper superset of the contents of
another message in D. The remaining members of D are the minimal complete disclosures that the party could
make.

We say that a negotiation strategy engine belongs to the DTS family of strategies if its disclosures are always
minimal complete disclosures. We claim that the strategies in the DTS family are almost as stingy with their
disclosures as it is possible to be. In the remainder of this section, we formalize and prove that claim.

A status list for a party, at 2 moment when the party has just received a disclosure message, lists the current
status of each node and credential: whether it is locked or unlocked, disclosed or undisclosed. A DNSD and
status list is valid for a particular strategy if that DNSD and strategy list could arise during an actual negotiation
using that engine. We say that a strategy engine E belongs to the DNSD family of strategies under a particular
edge disclosure option if E can be represented as a function that maps from a valid DNSD and status list to a
recommended set of credential and policy node disclosures. Intuitively, E belongs to the DNSD family if E
considers only the information in the DNSD and the status list when deciding what to disclose next. For
example, E cannot consider the DNSD of previous states in the negotiation, or reason about the transition
between two adjacent states. If E did so, £ might be able to eliminate some derivation trees in the current
DNSD, by figuring out that the other party does not still consider them to be viable trees. From a formal
viewpoint, it is perfectly reasonable to represent and reason about the other party’s beliefs during negotiation,
but it requires a greater effort than we think any practical strategy engine is likely to want to expend.

Proposition 1. DTS, Simple, and NotSoSimple belong to the DNSD family of strategies. ¢
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Confining our attention to members of the DNSD family, we say that a family F of strategies covers a
strategy A if for all possible valid choices 4 of a DNSD and status list, there is a strategy B in F such that (1) d
is valid for B, (2) the credential disclosures recommended by B for d are a subset of those recommended by A,
and (3) the policy disclosures recommended by B for d are a subset of those recommended by A.

Proposition 2. A strategy is approved for use with OTB if and only if it is covered by the DTS family of
Strategies. ¢

We are now ready to show that the completeness criterion for OTB’s strategy engines is necessary and
sufficient, within the DNSD strategy family, to ensure that negotiations succeed whenever possible.

Theorem 5. Let S be a strategy in the DNSD family that is not approved for OTB solely because § does not
satisfy OTB’s completeness requirement. Then there exists a strategy E that is approved for use with OTB, a
set of local and remote policy graphs and credentials, and a service request such that a negotiation using E and §
will fail, even though there is a safe sequence of credential disclosures terminated by the disclosure of the
requested service. ¢

7. Related work

Credential-based authentication and authorization systems fall into three groups: identity-based, property-
based, and capability-based. Originally, public key certificates, such as X.509 [20] and PGP [22], simply bound
keys to names, and X.509 v. 3 certificates later extended this binding to general properties (attributes)). Such
certificates form the foundation of identity-based systems, which authenticate an entity’s identity or name and
use it as the basis for authorization. Identity is not a useful basis for our aim of establishing trust among
strangers. Bina et al. [2] introduced our property-based credentials to allow the binding of arbitrary attributes
and support trust negotiation between strangers. Systems have emerged that use property-based credentials to
manage trust in decentralized, distributed systems [9][11][16] [19].

Johnston et al. [11] use attribute certificates (property-based credentials) and use-condition certificates
(policy assertions) for access control. Use-condition certificates enable multiple, distributed stakeholders to
share control over access to resources. In their architecture, the policy evaluation engine retrieves the
certificates associated with a user in order to determine if all the use conditions are met. Their work could be
extended using our approach to protect sensitive certificates.

The Trust Establishment Project at the IBM Haifa Research Laboratory [9] has developed a system for
establishing trust between strangers according to policies that specify constraints on the contents of public-key
certificates. Servers can use a collector to gather supporting credentials from issuer sites. Each credential
contains a reference to the site associated with the issuer. That site serves as the starting point for a collector-
controlled search for relevant supporting credentials. Security agents in our work could adopt the collector
feature, and we could use their policy definition language. Their work could be extended using our approach to
protect sensitive credentials and gradually establish trust.

Capability-based systems manage delegation of authority for a particular application. Capability-based
systems are not designed for establishing trust between strangers, since clients are assumed to possess
credentials that represent authorization of specific actions with the application server. In the capability-based
KeyNote system of Blaze et al. [3]{4], a credential describes the conditions under which one principal authorizes
actions requested by other principals. KeyNote policies delegate authority on behalf of the associated
application to otherwise untrusted parties. KeyNote credentials express delegation in terms of actions that are
relevant to a given application. KeyNote policies do not interpret the meaning of credentials for the application.
This is unlike policies designed for use with property-based credentials, which typically derive roles from
credential attributes. The IETF Simple Public Key Infrastructure [15] uses a similar approach to that of
KeyNote by embedding authorizations directly in certificates.

The P3P standard [12] focuses on negotiating the disclosure of a user’s sensitive private information based on
the privacy practices of the server. Trust negotiation is generalized to base disclosure on any server property of
interest to the client that can be represented in a credential. The work on trust negotiation focuses on certified
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properties of the credential holder while P3P is based on data submitted by the client that are claims the client
makes about itself. Support for both kinds of information in trust negotiation is warranted.

SSL [8], the predominant credential-exchange mechanism in use on the web, and its successor TLS [6][7]
support credential exchange during client and server authentication. The protocol is suited for identity-based
credentials and would need extension to make it adaptable to property-based credentials. Needed additions
include protection for sensitive server credentials and a way for the client to explain its policies to the server.

Islam et al. [10] show how to control downloaded executable content using policy graphs. Their definition of
policy graphs is different from ours, and their information that is akin to policies is not mobile, thus has no
access control mechanism. Their system assumes that all the appropriate credentials accompany downloaded
content. Their work could be extended using our approach to mobile policies and negotiation.

The first trust negotiation strategies proposed included a naive strategy that disclosed credentials as soon as
they were unlocked and disclosed no policy information, as well as a strategy that was its polar opposite,
disclosing credentials only after each party determined that trust could be established after reviewing the other
participant’s policies [16]. Reference [21] introduced a new strategy that was complete and could be more
efficient than the previous proposals, in a certain sense. In [14], consideration was given for sensitive policy
information in several strategies that established trust gradually through the introduction of policy graphs. The
fact that none of the strategies proposed in this earlier work will interoperate demonstrates the need for
middleware to support interoperability between the negotiation strategies.

8. Conclusions and future work

This paper has presented a subset of TrustBuilder, a negotiation-strategy-independent, policy-language-
independent piece of middleware for trust negotiation. TrustBuilder provides a large degree of autonomy to
each party in choosing the negotiation strategy that best meets their needs, while guaranteeing the safety and
completeness of ensuing trust negotiations. Because no two previously proposed trust negotiation strategies can
interoperate, the existence of TrustBuilder increases the likelihood that the two entities can in fact negotiate trust
successfully while adhering to the security requirements and negotiation style preferences that each party has
already established. We believe that the introduction of this kind of middieware protocol is the single most
significant enabler of ubiquitous trust negotiation.

TrustBuilder itself is an extremely simple wrapper for a strategy engine: it simply passes credential, policy,
and policy graph edge disclosures back and forth between the negotiation participants. This simplicity might
lead one to believe that TrustBuilder is the only possible trust negotiation protocol. Far from it! For example,
previously proposed negotiation strategies that never disclose policy information are not approved for use with
TrustBuilder, because the other negotiating party may be using a strategy that requires policy information to
guide its choices of disclosures. In the future we will explore other possible prototypes for middieware.

TrustBuilder’s simplicity is also misleading in the sense that the definition of exactly which trust negotiation
strategies will work correctly with TrustBuilder was extremely challenging to derive and prove, even with our
restriction to the well-behaved DNSD strategy family. It is clear that TrustBuilder will work correctly with
some strategy engines that lie outside the DNSD family, and we plan to investigate these extensions in the
future.

TrustBuilder grew out of our experience with the implementation of a previous framework for trust
negotiation (not described in this paper due to the blind review requirements). The previous framework only
worked when the two parties used the same strategy engine, and required retooling whenever we wanted to
experiment with a different strategy. We will replace the old framework implementation with a new one that
supports TrustBuilder.
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10. Appendix

The first section of the appendix contains a complete example of Simple (running at the client) interacting
with NotSoSimple (running at the server). The second section contains a complete example of two members of
the DTS family of strategies, interacting during a negotiation. The two sections use the same policy graphs, sets
of credentials, and service request.

Client’s local policy graphs: Server’s local policy graphs:

C[ R

T / \ S, S, S;
C.
QI:SI Cz ‘ P)ZC[ACZ P;ZCJ T T T
SR | SN
Pg:

S, 0008
inSz\/S_y Qj ? ‘ !
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10.1 Example of Simple interacting with NotSoSimple

The following is an example of a hypothetical trust negotiation between a client and server, with the client
using the Simple negotiation strategy and the server using the NSS negotiation strategy. The negotiation is
based on the client and server policy graphs shown above. During each stage of the negotiation, the changes to
the local state of the negotiation participant are enumerated according to the algorithms in the pseudocode
presented earlier in the paper.

The client requests service R:

Stage 1: Server
Queue=<Ps>; Innermost = { P;}; UnlockedLocalNodes={ P;}
Call Simple_process_queue (<Py>, &, { P;}, { P3})
Queue= <P,, P>

UnlockedLocalNodes = { P;, P,, R}; NewlyUnlockedPolicies = { P;, P;, P}
Innermost { P,, P;}; Newlnnermost={ P,, P,}
Dequeue P; Queue =< Pp>; Dequeue P; Queue=<>

Return (&, { P;, P;})
PoliciesToDisclose = DisclosedLocalPolicies = { Py, P;};
DisclosedLocalCreds=&
Discloses (&, { P;, P;}, edges)
Stage 2: Client
RemotePolicies = { P;, P,};
Queue = UnlockedLocalNodes = NewlyUnlockedSources = Boundary = {Q,, @5, Q,}

Call Simple_Process_Queue (<Q;, @3, 0>, D, { @2, @3, @4}, { Q2. Qs, O}

Dequeue @,. Queue=< Q;, 0,>; Dequeue Q5. Queue=< Q>; Dequeue @,. Queue=<>
Return (J,9)
NewlyUnlockedSinks = NewlyUnlockedpolices = & DisclosedLocalPolicies = { 0, 03, Oy}

Return (@s { QZ’ st Q«i}s edges)
Stage 3: Server

Credentials=; RemotePolicies={ @,, @3, O4};
Innermost={ Py, P;); UnlockedLocalNodes={ P,, P;, P3}
Queue = <Ps, Pg>; UnlockedLocalNodes = { P,, P;, P;, P,, Ps, Ps};
Innermost={ P,, P,, Ps, Ps,}; NewlyUnlockedSources={ Ps, Pg}
Call simple_process_queue (<Ps, Ps>,,{ Py, P;, Ps, Ps},{ P;, P,, P;, Ps, Pg})
Dequeue Ps; Queue=< Pg>
Frontier = Innermost = { Py, P,, Ps}; NewlyUnlockedSinks={S,}
UnlockedLocalNodes = { P;, P;, P3, Ps, Ps, S5}
Dequeue P, Queue=<>
Return ({S,},9}
CredentialsToDisclose = DisclosedLocalCredentials = { 8}
PoliciesToDisclose={ Ps, Ps}; DisclosedLocalPolicies = {P,, P,, Ps, Ps}

Discloses ({5:},{ Ps, Ps}, edges}
Stage 4: Client
RemoteCredentials = { S,};

RemotePolicies = { Ps, Ps, P, P} Queue = < 0, 03, @

Call Simple_Process_Queue (<@, @3, @/, { Sz}, { 02, 03. O}, { Oz, O3, O4}
Dequeue Q;. Queue=< @3, 0/ BoundaryFrontier={ Q,, 03}
Queue=< @3, 0.0, UnlockedLocalNodes={ Q@,, 03, Q,, @1}
NewlyUnlockedPolicies={ @} Boundary=Frontier={ Q;, Q,, 01}
NewFrontier={Q,}
Dequeue QJ Queue=< Q,‘, Q1>; Boundary = Frontier = { Q4, QI}
NewlyUnlockedSinks={C,}; UnlockedLocalNodes={ C,, @;, 0.}
Dequeue @,. Queue=< @,> Dequeue ;. Queue=<>

Return ({C2},{ @1})
CredentialsToDisclose = { C;} = DisclosedLocalCredentials = { C,}; DisclosedLocalPolicies = { @, @», @3, C4}
Disclose ({ C;},{ Q,}.edges)
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Stage 5: Server

RemoteCredentials={ C,}: RemotePolicies={ @2, Q3. Q.. @s}
Queue =< Pp>; Queue=< P, P>
UnlockedLocalNodes = { Py, Ps, Ps, P, Ps, Pg, S5},
Innermost={ P;, P;, Ps, P,,}; NewlyUnlockedSources={ P,}
Call simple_process_queue (< Py, P>, Co},{ Py, Py, Py, Pg} { Py, P2, P3, Py, Ps, Py, S3})
Deququ Pj; Queue=< P>
Dequeue Py; Queue=<>
Frontier = Innermost = { Py, P,, Pg)} NewlyUnlockedSinks={S,}

UnlockedLocalNodes = { P], Pz, P3, P,[, PS: Py, S], Sz}
Return (NewlyUnlocked{ S,},&}
DisclosedLocalCredentials = { S}, S5}
Discloses ({S;}.Z,edges}
Stage 6: Client
RemoteCredentials = { S3, $;}:

RemotePolicies = { Py, P,, Ps, P} Queuve = <@, 0>

Call Simple_Process_Queue (<Qy, @r>, { 81,82}, { Q0w Q1. { 01, 02, 05, O, Co1)
Dequeue Q. Queue=< @,>; Dequeue Q; Queue=<>
NewlyUnlockedSinks={C;}; UnlockedLocalNodes={ Q;, @;, O3, @y, C1. C;}

Frontier = Boundary ={ Q,}
Return (NewlyUnlockedSinks:{ C;} ,NewlyUnlockedPolicies: &)
DisclosedLocalCredentials = { C;, C,};
Disclose ( { C/},J.edges)
Stage 7: Server

DisclosedRemoteCredentials = { C;, C}; DisclosedRemotePolicies={ Q;, O, 03, O}
Innermost={ P;,} Queue=< P>
Call simple_process__queue (<P1>, { CI, Cz}, { PI }, { P], Pz, P_q, P4, P5, P6, SI: Sz})

Deququ Py; Queue=<>

Frontier = Innermost = &

Exit Negotiation.

The server grants the client access to service R.

10.2 Example of the DTS family of strategies in action

The section provides an example of a hypothetical trust negotiation between a client and server using the
DTS strategy. The negotiation is based on the client and server policy graphs presented at the beginning of this
section. The following boxes contain the DNSD graphs for the client and server.

Server’s DNSD for local policy graphs
Client’s DNSD for local policy graphs R <P, P PinCAGC
Cl(—QI QI(—QZ/\SI g(—'};’ £2(_P3/\C3
Cr Qs [ SI::I; PJ:C
C, S. 2 E] ] 2
3¢ Oy Qs Sy SN b
P6 - Cj
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The Client requests service R.

Stage 1: Server

3 3 .
Server’s 1st remote policy graphs: Server’s Ist DNSD for remote policy
C[ Cz C3
graphs:
T T T C,« H, H, « Source,
G« H; H, < Source;
H; H, H;: C; « H; H; « Source;
T Source; «
Source; «
Source; Source;, Source; Source; «

Server’s 1st derivation trees:

R R
i AN 4
(o C; P; C; \PJ
H 1 H2 H, 3
Source;  Source, Source;
We prune Source,, Source;, H),, We prune Source;, P; (a
H;, and P;. C; and C; will be satisfied policy) and H; (now a
qualifying leaves if we disclose hypothetical policy node leaf).
P;, which is safe to do. C; is a qualifying leaf if we
disclose P, which 1s safe to do.

The server discloses P; and P,.

Stage 2: Client

Client’s 1st remote policy graphs:
R S S Ss Client’s 1st DNSD for remote policy graphs:
/ \ T T T R« H, H;« P, Source; «
Hyp H;: H,: H, Hy R« H; H;« P; Source; <
S« H, H, < Source; Source; «
T T S; « H; Hs < Source; Sourcey «
P.CinG, Pr:Cs Source;  Source,  Sources: Ss - Hs Hs < Source,
P; « Source; A CyAC, P; « Source; AC;
Source;.
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Client’s 1st derivation trees
y R R R
; L |
N AN N
/ P, / P, \ Source; P,
/C, Source, /C, Source; \C
CZ Cg 3
Ql\ \ Ql\ \ /
Q.
Qz/ SI\ QJ\ QZ/ Sl QJ\ / ‘
AN AN s
SJ\ H4\ S;\ \S y H, 4\ SZ\ ¥
AN H
H; Source, Hs Hs Source; H ‘
\ \ \ Source,
Source, Source; Source; Source;
Tree #1: We prune off the source Tree #2: We will have a qualifying Tree #3: We prune Source,,
nodes, Hy, H,, H;, and see that we will leaf S, if we disclose @, or Q;. We then Hs, and Source; S; is
have a qualifying leaf S5 if we disclose cannot disclose @; to make S; a the only possible qualifying
0,, or qualifying leaf S, if we disclose qualifying leaf, as that would be leaf, so we must disclose Q..
. unsafe.

The client chooses to disclose @, and both Q, and Q; (either one alone of @, and Q; would suffice, but this should move

negotiations along faster).

Stage 3: Server

Server’s 2nd remote policy graphs:
C, .
¢ G { Server’s 2nd DNSD for remote policy graphs:
T T T Ci« H, Hi«Q; Source;
H,; H, H; C;« H; H; <« Q; Source; «—
C;« H; H; « Qq Source; «-
O, « Sz A Source, Q; « S; ASource,
0::8:v8 0.5, Q/:TSJ 0, « 8: ASource; Q. « S; ASource;
Source, Source; Source;

Server’s 2nd derivation trees:

P,
VRN

C c b qualifying leaf is C; or C;, if we disclose S..
NN
H, H,
l AN
0 &
/ VRN
S Source; S: Source,;
Ps Ps

R Note: We do not have any trees where C; and

[ §; are used to derive each other (i.e. there isa
cyclic dependency between them.). We
prune Source;, P;, Ps. The only possible

The server discloses S,.
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Stage 4: Client

The client’s 2™ remote policy graphs, 2 DNSD, and 2™ derivation trees are all unchanged from the 1% versions in stage 2.
We can now prune out all subtrees rooted at S;. For tree #1, S, is already a qualifying leaf. We could also disclose C, if
we want to speed up negotiations. Sj is also a qualifying leaf. For tree #2, the only potential qualifying leaf is S, if we
disclose @;. If desired, we can also disclose C;, if we want to speed up negotiations. For tree #3, S; is already a qualifying
leaf, and there is nothing else we can disclose. Conjecture: we can delete #1 and #3 due to lack of change.

The client chooses to disclose Q; and C,.

Stage 5: Server

Server’s 3rd remote policy graphs:
C C: G Server’s 3rd DNSD for remote policy graphs:

/ \ T T C, « H, H«Q, Source; «
C,« H; H;« Qs Source;
7 H, H; H, C; « H; H; < Qy Source;

T C,« H; H;«— Q, Q;« S;ASource,

0, < S: ASource, Q; « S: ASource;

o :Sl\sz'v S 0:.8; Q‘v'TSj Q: « S; ASource, Qs < S; ASource,

Source; Source; Source;

Server’s 3rd derivation trees: There is nothing new that the
R R server can safely disclose in the
‘ ] 2™ derivation trees. In the new
P, one, we prune out the S; and C;
P / ] AN subtrees.  The only possible
/ { \ G C.x P qualifying leaf is €, if we
(o c P \ 2\ disclose ;.
\ H; H;

H H
N | Ng,
0; /Q3 \ / & \ /
Sz/ Sou\rce3 S Source; Si Source; % Source;

| | |

P
P5 P5 P4 s

G *  subtree continues

N Zis above

The server discloses S;.

Stage 6: Client

The client’s 3rd remote policy graphs, DNSD, and derivations are unchanged (see 1® ones above), but we can prune higher,
removing subtrees rooted at Sy, S,, and C;. For tree #2, R is a qualifying leaf if we disclose C,;. There is nothing we can do
in tree #1 or #3.

Client discloses C;.

Stage 7: Server

The server discloses R.
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Note: If an omniscient third party combines the policy graphs of the client and the server, they would get the following
derivation tree for R.

C, C, P;
N\

[ 0;
/ N\
S; 0 2
NN
Cz/

AN

0;
/
S

A safe credential disclosure sequence terminated by R’s disclosure: S, Cs, S}, C;, R.
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APPENDIX F

Interoperable Strategies in Automated Trust
Negotiation

Abstract

Automated trust negotiation is an approach to establishing trust between strangers through
the exchange of digital credentials and the use of access control policies that specify what
combinations of credentials a stranger must disclose in order to gain access to each local service
or credential. We introduce the concept of a trust negotiation protocol, which defines the ordering
of messages and the type of information messages will contain. To carry out trust negotiation,
a party pairs its negotiation protocol with a trust negotiation strategy that controls the exact
content of the messages, i.e., which credentials to disclose, when to disclose them, and when to
terminate a negotiation. There are a huge number of possible strategies for negotiating trust,
each with different properties with respect to speed of negotiations and caution in giving out
credentials and policies. In the autonomous world of the Internet, entities will want the freedom
to choose negotiation strategies that meet their own goals, which means that two strangers who
negotiate trust will often not use the same strategy. To date, only a tiny fraction of the space
of possible negotiation strategies has been explored, and no two of the strategies proposed so
far will interoperate. In this paper, we define a large set of strategies called the disclosure tree
strategy (DTS) family. Then we prove that if two parties each choose strategies from the DTS
family, then they will be able to negotiate trust as well as if they were both using the same
strategy. Further, they can change strategies at any point during negotiation. We also show that
the DTS family is closed, i.e., any strategy that can interoperate with every strategy in the DTS
family must also be a member of the DTS family. We also give examples of practical strategies
that belong to the DTS family and fit within the TrustBuilder architecture and protocol for
trust negotiation.

1 Introduction

With billions of users on the Internet, most interactions will occur between strangers, i.e., entities
that have no pre-existing relationship and may not share a common security domain. In order
for strangers to conduct secure transactions, a sufficient level of mutual trust must be established.
For this purpose, the identity of the participants (e.g., their social security number, fingerprint,
institutional tax ID) will often be irrelevant to determining whether or not they should be trusted.
Instead, the properties of the participants, e.g., employment status, citizenship, group membership,
will be most relevant. Traditional security approaches based on identity require a new client to pre-
register with the service, in order to obtain a local login, capability, or credential before requesting
service; but the same problem arises when the client needs to prove on-line that she is eligible
to register with the service. E-commerce needs a more scalable approach that allows automatic
on-line pre-registration, or does away entirely with the need for pre-registration. We believe that
automated trust establishment is such a solution.

With automated trust establishment, strangers establish trust by exchanging digital credentials,
the on-line analogues of paper credentials that people carry in their wallets: digitally signed asser-
tions by a credential issuer about the credential owner. A credential is signed using the issuer’s
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private key and can be verified using the issuer’s public key. A credential describes one or more at-
tributes of the owner, using attribute name/value pairs to describe properties of the owner asserted
by the issuer. Each credential also contains the public key of the credential owner. The owner can
use the corresponding private key to answer challenges or otherwise demonstrate ownership of the
credential. Digital credentials can be implemented using, for example, X.509 [10] certificates.

While some resources are freely accessible to all, many require protection from unauthorized
access. Access control policies can be used for a wide variety of “protected” resources, such as
services accessed through URLs, roles in role-based access control systems, and capabilities in
capability-based systems. Since digital credentials themselves can contain sensitive information,
their disclosure will often also be governed by access control policies. For example, suppose that
a landscape designer wishes to order plants from Champaign Prairie Nursery (CPN). She fills out
an order form on the web, checking an order form box to indicate that she wishes to be exempt
from sales tax. Upon receipt of the order, CPN will want to see a valid credit card or her account
credential issued by CPN, and a current reseller’s license. The designer has no account with CPN,
but she does have a digital credit card. She is willing to show her reseller’s license to anyone, but
she will only show her credit card to members of the Better Business Bureau. Therefore, when
protected credentials are involved, a more complex procedure needs to be adopted to establish trust
through negotiation.

2 Related Work

Credential-based authentication and authorization systems fall into three groups: identity-based,
property-based, and capability-based. Originally, public key certificates, such as X.509 [10] and
PGP [17], simply bound keys to names, and X.509 v.3 certificates later extended this binding to
general properties (attributes). Such certificates form the foundation of identity-based systems,
which authenticate an entity’s identity or name and use it as the basis for authorization. Identity
is not a useful basis for our aim of establishing trust among strangers.

Systems have emerged that use property-based credentials to manage trust in decentralized,
distributed systems [8, 12, 15]. Johnson et al. [12] use attribute certificates (property-based creden-
tials) and use-condition certificates (policy assertions) for access control. Use-condition certificates
enable multiple, distributed stakeholders to share control over access to resources. In their archi-
tecture, the policy evaluation engine retrieves the certificates associated with a user to determine
if the use conditions are met. Their work could use our approach to protect sensitive certificates.

The Trust Establishment Project at the IBM Haifa Research Laboratory [8] has developed a
system for establishing trust between strangers according to policies that specify constraints on
the contents of public-key certificates. Servers can use a collector to gather supporting credentials
from issuer sites. Each credential contains a reference to the site associated with the issuer. That
site serves as the starting point for a collector-controlled search for relevant supporting credentials.
Security agents in our work could adopt the collector feature, and we could use their policy definition
language. Their work could use our approach to protect sensitive credentials and gradually establish
trust.

Capability-based systems manage delegation of authority for a particular application. Capability-
based systems are not designed for establishing trust between strangers, since clients are assumed
to possess credentials that represent authorization of specific actions with the application server.
In the capability-based KeyNote system of Blaze et al. [2, 3], a credential describes the conditions
under which one principal authorizes actions requested by other principals. KeyNote policies del-
egate authority on behalf of the associated application to otherwise untrusted parties. KeyNote
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credentials express delegation in terms of actions that are relevant to a given application. KeyNote
policies do not interpret the meaning of credentials for the application. This is unlike policies
designed for use with property-based credentials, which typically derive roles from credential at-
tributes. The IETF Simple Public Key Infrastructure [9] uses a similar approach to that of KeyNote
by embedding authorization directly in certificates.

Bonatti el at. [4] introduced a uniform framework and model to regulate service access and
information release over the Internet. Their framework is composed of a language with formal
semantics and a policy filtering mechanism. Our work can be integrated with their framework.

The P3P standard [14] focuses on negotiating the disclosure of a user’s sensitive private in-
formation based on the privacy practices of the server. Trust negotiation is generalized to base
disclosure on any server property of interest to the client that can be represented in a credential.
The work on trust negotiation focuses on certified properties of the credential holder while P3P is
based on data submitted by the client that are claims the client makes about itself. Support for
both kinds of information in trust negotiation is warranted.

SSL [7], the predominant credential-exchange mechanism in use on the web, and its successor
TLS [5, 6] support credentials exchange during client and server authentication. The protocol is
suited for identity-based credentials and would need extension to make it adaptable to property-
based credentials. Needed additions include protection for sensitive server credentials and a way
for the client to explain its policies to the server.

Islam et al. [11] show how to control downloaded executable content using policy graphs. Their
system assumes that all the appropriate credentials accompany requests for downloaded content.
Their work could be extended using our approach to disclose policies and conduct negotiations.

The first trust negotiation strategies proposed included a naive strategy that discloses credentials
as soon as they are unlocked and discloses no policy information, as well as a strategy that discloses
credentials only after each party determines that trust can be established, based on reviewing
the other party’s policies [15]. Yu et al. [16] introduced a new strategy that would succeed
whenever success was possible and had certain efficiency guarantees. In [13], consideration was
given for sensitive policy information in several strategies that established trust gradually through
the introduction of policy graphs. The fact that none of the strategies proposed in this earlier
work will interoperate demonstrates the need for trust negotiation protocols and strategy families
to support interoperability between negotiation strategies.

3 Trust Negotiation

In our approach to automated trust establishment, trust is established incrementally by exchanging
credentials and requests for credentials, an iterative process known as trust negotiation. While a
trust negotiation protocol defines the ordering of messages and the type of information messages
will contain, a frust negotiation strategy controls the exact content of the messages, i.e., which
credentials to disclose, when to disclose them, and when to terminate a negotiation. Figure 1
introduces our TrustBuilder architecture for trust negotiation. Each participant in the negotiation
has an associated security agent (SA) that manages the negotiation. The security agent mediates
access to local protected resources, i.e., services and credentials. We say a credential or access
control policy is disclosed if it has been sent to the other party in the negotiation, and that a service
is disclosed if the other party is given access to it. Disclosure of protected resources is governed by
access control policies. During a negotiation, the security agent uses a local negotiation strategy
to determine what local resources to disclose next, and to accept new disclosures from the other
party.
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Figure 1: An architecture for automated trust negotiation. A security agent that manages local
protected resources and their associated access control policies represents each negotiation partic-
ipant. A access control policy specifies what resources the other party needs to disclose in order
to gain access to a local resource, as indicated by the dotted lines in the figure. Trust negotiation
middleware enables negotiation strategy interoperability.

Negotiation Strategy
T Services,

Credentials { | Negotiatior
Accesc control policies | | | | Strategy

L

The architecture in figure 1 supports a single protocol for establishing trust, and assumes
there will be a variety of negotiation strategies that must be supported. All trust negotiation
strategies share the goal of building trust through an exchange of digital credentials that leads to
obtaining access to a protected resource. Once enough trust has been established that a particular
credential can be disclosed to the other party, a local negotiation strategy must determine whether
the credential is relevant to the current stage of the negotiation. Different negotiation strategies
will use different definitions of relevance, involving tradeoffs between computational cost, the length
of the negotiation, and the number of disclosures.

From the handful of trust negotiation strategies proposed so far in the literature, it is clear that
there are endless possible variations in how to negotiate trust. Rather than exploring the space of
all possible strategies one strategy at a time, our goal in this paper is to characterize a broad class
of strategies (section 6) and design a strategy-independent, language-independent trust negotiation
protocol (section 5) that ensures their interoperability within the TrustBuilder trust negotiation
architecture.

4 Access Control Policies

We assume that the information contained in access control policies (policies, for short) and cre-
dentials can be expressed as finite sets of statements in a formal language with a well-defined
semantics. XML or logic programming languages with appropriate semantics may be suitable lan-
guages in practice [8, 1]. For convenience, we will assume that the original language allows us to
describe the meaning of a set of statements as the set of all models that satisfy the set of statements,
in the usual logic sense. We say that a set X of statements satisfies a set of statements P if and
only if P is true in all models of X. For purely practical reasons, we require that the language
be monotonic, i.e., if a set of statements X satisfies policy P, then any superset of X will also
satisfy P; that way, once a negotiation strategy has determined that the credentials disclosed by a
participant satisfy the policy of a resource, the strategy knows that the same policy will be satisfied
for the rest of the negotiation, and does not have to be rechecked.
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Credit-Card «- BBB_Member \ Order OK « (Credit.Card vV CPN_Account)A

Reseller_License

Order OK BBB_Member « true

Reseller_License «+ true

Figure 2: An example of access control policies and a safe disclosure sequence which establishes
trust between the server and the client.

In this paper, we will treat credentials and services as propositional symbols. Each of these re-
sources has exactly one access control policy, of the form C + Fo(Cy, ..., Ct), where Fo(Ch,...,C)
is a Boolean expression involving only credentials Cj,...,Cy that the other party may possess,
Boolean constants true and false, the Boolean operators V and A, and parentheses as needed.
C; is satisfied if and only if the other party has disclosed credential C;. We assume that we can
distinguish between local and remote resources (by renaming propositional symbols as necessary).
Resource C is unlocked if its access control policy is satisfied by the set of credentials disclosed
by the other party. A resource is unprotected if its policy is always satisfied. The denial policy
C < false means that either the party does not possess C, or else will not disclose C' under any
circumstances. A party implicitly has a denial policy for each credential it does not possess. If the
disclosure of a set S of credentials satisfies resource R’s policy, then we say S is a solution set for
R. Further, if none of S’s proper subsets is a solution set for R, we say S is a minimal solution set
for R. The size of a policy is the number of symbol occurrences in it.

Given sequence G = (C4,. .., Cp) of disclosures of protected resources, if each C; is unlocked at
the time it is disclosed, 1 < i < n, then we say G is a safe disclosure sequence. The goal of trust
negotiation is to find a safe disclosure sequence G = (Cy,...,C, = R), where R is the resource to
which access was originally requested. When this happens, we say that trust negotiation succeeds.
If C; =C; and 1 <4 < j < n, then we say G is redundant. Since the language used to represent
policies and credentials is monotonic, we can remove the later duplicates from a redundant safe
disclosure sequence and the resulting sequence is still safe. Figure 2 shows a safe disclosure sequence
for the landscape designer’s purchase from CPN discussed earlier. A more complex example can be
found in Appendix B. It is important to note that this example, and our algorithms that follow,
rely on lower levels of software to perform the functions associated with disclosure of a credential:
verification of its contents, checks for revocation as desired, checks of validity dates, authentication
of ownership, etc., as is normally done for X.509 certificates. The necessary calls to these functions,
and the translation of credentials into the language used to represent policies, are not shown in our
algorithms.

5 The TrustBuilder Protocol and Strategy Families

Previous work on trust negotiation has not explicitly proposed any trust negotiation protocols,
instead defining protocols implicitly by the way each negotiation strategy works. This is one reason
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TrustBuilder_handle_disclosure_message (m, R)
Input: m is the last disclosure message received from the remote party.

R is the resource to which the client originally requested access.
TrustBuilder.check for_termination(m, R). //Stop negotiating, if appropriate.
TrustBuilder_next_message(m, R).

End of TrustBuilder_handle_disclosure.message.

TrustBuilder_next_message(m, R)

// First, let the Jocal strategy suggest what the next message should be.

Let G be the disclosure message sequence so far.

Let L be the local resources and policies.

Sm = Local strategy(G, L, R).

// Sm contains the candidate messages the local strategy suggests.

Choose any single message m' from Sy,.

Send m’ to the remote party.

TrustBuilder.check for_termination(m’, R). //Stop negotiating, if appropriate.
End of TrustBuilder_next_message.

TrustBuilder_check_for_termination(m, R)

If m is the empty set @ and this is not the beginning of the negotiation,
Then negotiations have failed. Stop negotiating and exit.

If m contains the disclosure of R,
Then negotiations have succeeded. Stop negotiating and exit.

End of TrustBuilder_check_for_termination.

Figure 3: Pseudocode for the TrustBuilder protocol. The negotiation is triggered when the client
asks to access a protected resource owned by the server. After rounds of disclosures, either one
party sends a failure message and ends the negotiation, or the server grants the client access.

why no two different previously proposed strategies can interoperate — their underlying protocols
are totally different.

We remedy this problem by defining a simple protocol for TrustBuilder. Formally, a message in
the TrustBuilder protocol is a set {R1, ..., Ry} where each R; is a disclosure of a local credential,
a local policy, or a local resource. When a message is the empty set @, we also call it a failure
message. Further, to guarantee the safety and timely termination of trust negotiation no matter
what policies and credentials the parties possess, the TrustBuilder protocol requires the negotiation
strategies used with it to enforce the following three conditions throughout negotiations:

1. If a message contains a denial policy disclosure C < false, then C must appear in a previously
disclosed policy.

2. A credential or policy can be disclosed at most once.
3. Every disclosure must be safe.

Before the negotiation starts, the client sends the original resource request message to the server
indicating its request to access resource R. This request triggers the negotiation, and the server
invokes its local security agent with the call TrustBuilder_handle_disclosure_message(@, R). Then
the client and server exchange messages until either the service R is disclosed by the server or one
party sends a failure message. The whole negotiation process is shown in figure 3.

In the remainder of this paper, unless otherwise noted, we discuss only strategies that can be
called from the TrustBuilder protocol and satisfy the three conditions above. A formal definition
of a negotiation strategy is given below.
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Definition 5.1. A strategy is a function f: {G,L, R} = Sm, where R is the resource to which the
client originally requested access, G = (m1,...,my) is a sequence of disclosure messages such that
m; #0 and R ¢ m; for 1 <i <k, L is the set of local resources and policies, and Sy, is a set of
disclosure messages. Further, every disclosure in a message in Sy, must be of a local resource or
policy, as must be all the disclosures in my._o;, for 1 < k —2i < k. The remaining disclosures in G
are of remote resources and policies.

Intuitively, based on the disclosures made so far, plus the local resources and policies, a ne-
gotiation strategy will suggest the next set of disclosures to send to the other party. Note that
a strategy returns a set of possible disclosure messages, rather than a single message. Practical
negotiation strategies will suggest a single next message, but the ability to suggest several possible
next messages will be very convenient in our formal analysis of strategy properties, so we include
it both in the formal definition of a negotiation strategies and also in the protocol pseudocode in
figure 3.

Definition 5.2. Strategies fa4 and fp are compatible if whenever there exists a safe disclosure
sequence for a party P4 to obtain access to a resource owned by party Pp, the trust negotiation will
succeed when Py uses f4 and Pp uses fp. If f4 = fp, then we say that f4 is self-compatible.

Definition 5.3. A strategy family is a set F of mutually compatible strategies, i.e., Vf1 € F, fa €
F, f1 and fo are compatible. We say a set F of strategies is closed if given a strategy f', if f' is
compatible with every strategy in F, then f' € F.

One obvious advantage of strategy families is that a security agent (SA) can choose strategies
based on its needs without worrying about interoperability, as long as it negotiates with other
SAs that use strategies from the same family. As another advantage, under certain conditions, an
SA does not need to stick to a fixed strategy during the entire negotiation process. It can adopt
different strategies from the family in different phases of the negotiation. For example, during
the early phase, since the trust between two parties is very limited, an SA may adopt a cautious
strategy for disclosing credentials. When a certain level of trust has been established, in order
to accelerate the negotiation, the SA may adopt a less cautious strategy. However, without the
closure property, a family may not be large enough for practical use. As an extreme example,
given any self-compatible strategy f, {f} is a strategy family. The closure property guarantees the
maximality of a strategy family.

In general, the notions of strategy families and closed sets of strategies are incomparable, in the
sense that neither of them implies the other. For example, if a strategy f’s output is {m}, where
m is a message containing all the undisclosed local policies and unlocked credentials, then it is easy
to prove that f is self-compatible. Then {f} is a family, but by no means closed. On the other
hand, consider the strategy f' whose output is always {#}. Obviously f’ is not compatible with
any strategies. The strategy set {f’} is not a family but is closed.

We end this section with two simple propositions.

Proposition 5.1. Any subset of a strategy family is also a family.

Proposition 5.2. If a strategy family F is a proper subset of another family, then F is not closed.

6 Characterizing Safe Disclosure Sequences

In this section, we define the concepts that we use to describe the progress of a negotiation and
to characterize the behavior of different strategies. In the remainder of the paper, we use R to
represent the resource to which access was originally requested.
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Figure 4: Example disclosure trees for a set of policies

6.1 Disclosure Trees
Definition 6.1. A disclosure tree for R is a finite tree satisfying the following conditions:
1. The root represents R.

2. Except for the root, each node represents a credential. When the context is clear, we refer to
a node by the name of the credential it represents.

8. The children of a node C form a minimal solution set for C.

When all the leaves of a disclosure tree T are unprotected credentials, we say T is a full disclosure
tree. Given a disclosure tree T, if there is a credential appearing twice in the path from a leaf node
to the root, then we call T a redundant disclosure tree.

Figure 4 shows example disclosure trees. Note that 75 is redundant and Ty is a full disclosure
tree.

The following theorems state the relationship between disclosure trees and safe disclosure se-
quences that lead to the granting of access to resource R. Proofs of all theorems can be found in
Appendix A.

Theorem 6.1. Given a non-redundant safe disclosure sequence G = (Cy,...,Cp = R), there is a
full non-redundant disclosure tree T such that both of the following hold:

1. The nodes of T are a subset of {Cy,...,Cp}.

2. For all credential pairs (C}, C3) such that C} is an ancestor of Ch in T, Ch is disclosed before
¢! in G. 0

Theorem 6.2. Given a full disclosure tree for R, there is a non-redundant safe disclosure sequence
ending with the disclosure of R. 0

By theorems 6.1 and 6.2, we get the following corollary immediately.
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Corollary 6.1. Given a safe disclosure sequence G = (Ci,...,Cp = R), there is a full non-
redundant disclosure tree T such that:

1. The credential nodes of T' are a subset of {Ch,...,Chr},

2. For all credential pairs (C,C%) such that C} is an ancestor of Ch in T, the first disclosure
of C4 in G 1is before the first disclosure of C|.

Without loss of generality, from now on, we consider only non-redundant disclosure sequences.

Since there is a natural mapping between safe disclosure sequences and disclosure trees, during
the negotiation, theoretically one could determine whether a potential credential or policy disclosure
is helpful by examining all the disclosure trees for R. At the beginning of a negotiation, before
disclosures begin, the only relevant disclosure tree for the client contains a single node R. As the
negotiation proceeds, other trees may become relevant. The following definitions help us describe
the set of relevant trees.

Definition 6.2. Given o disclosure tree T and a set of S, of credentials, the reduction of T by
Se, reduction(T, S;), is the disclosure tree T' which is obtained by removing all the subtrees rooted
at a node representing resource C € S.. Given a set Si of disclosure trees, reduction(Si, Sp) =
{reduction(T,S;) | T € S;}.

If S, is the set of credential disclosures made so far, then reducing T by S. prunes out the part of
the negotiation that has already succeeded. Intuitively, if a credential C has been disclosed, then we
already have a safe disclosure sequence for C. We do not need to disclose additional credentials or
policies in order to get a full disclosure tree rooted at C. An example of a disclosure tree reduction
is shown in figure 5(a).

Definition 6.3. Given a disclosure tree T and a policy set Sp containing no denial policies, the
expansion of T' by Sy, expansion(T, Sy), is the set of all disclosure trees T; such that

1. T is a subgraph of T;, i.e., there ezists a set S of credentials such that reduction(T;,5) =T.
2. For each edge (Cy,C2) in Ty, if (C1, Ca) is not an edge of T, then Cy’s policy is in Sp.
3. For each leaf node C of T;, either S, does not contain C'’s policy, or T; is redundant.

Given a set of disclosure trees Sy, expansion(Sy, Sp) = Upes, exzpansion(T, Sp).

A disclosure tree can expand when a party receives new policy disclosures. An example of a
disclosure tree expansion is shown in figure 5(b).

Definition 6.4. Given a set Sy of disclosure trees and a set Sg, of denial policies, the denial
pruning of S; by Sap, denoted prunegeniai(St, Sap), is the set

{T|T € S; and T contains no resource whose policy is in Sgp}.

Since a full disclosure tree contains only credentials that the two parties possess, if a disclosure
tree node represents a credential with a denial policy, that tree cannot evolve into a full disclosure
tree, and is no longer relevant.

Definition 6.5. Given a set Sy of disclosure trees, the redundancy pruning of Sy, denoted prune,egundan:{(St),
15 the set
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Figure 5: Examples of operations on disclosure trees
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{T'|T € Sy and T is not a redundant disclosure tree}.

The rationale for redundancy pruning will be shown after we introduce more operations on
disclosure trees. Examples of denial and redundancy pruning are shown in figure 5(c).

Definition 6.6. Given a disclosure tree T and a set Sgp of denial policies, Sy, of non-denial policies,
and S¢ of credentials, let S = Sy, U S, US,. The evolution of T by S, denoted evolution(T, S), is

PTUneredundant (Prunedenial (reduction(ezpansion(T, Sp), Sc), Sap)-

Given a set Sy of disclosure trees, evolution(S, S) = Urcg, evolution(T,S). As a special case,
when T is the disclosure tree containing only a root node R, then we say evolution(T,S) is the
view of S, denoted view(S).

During the negotiation, let S be the set of credentials and policies disclosed so far and L be
the local policies of a negotiation party. Then view(S U L) contains all the relevant disclosure trees
which can be seen by this party. An example view is shown in figure 5(d). Sometimes even though
a tree may evolve into a full tree later in the negotiation, it is nonetheless redundant and can be
removed by redundancy pruning, whose correctness is guaranteed by the following theorem.

Theorem 6.3. Let T be a full but redundant disclosure tree. Then there is a full disclosure tree T"
that is not redundant. O

Suppose S is the set of currently disclosed credentials and policies. By theorem 6.3, if a redun-
dant tree may evolve into a full tree, then the corresponding non-redundant tree is already included
in view(S). So the redundant trees are not relevant for the remainder of the negotiation.

In order to make a negotiation successful whenever the policies of the two negotiation parties
allow, the negotiation strategy should make sure no possible full disclosure trees have been over-
looked. A disclosure tree also tells a party what may contribute to the success of a negotiation. As
an example, suppose party Pp requests service R from party Ps. Sy, the set of disclosures so far,
and view(Sy) are shown in figure 6. Suppose now it is P4’s turn to send a message to Pp. From
the disclosure tree, it is clear to an outside observer that credentials C 47 and C 4 must be disclosed
if the negotiation is to succeed. So P4’s negotiation strategy can now disclose C41’s and/or Caz’s
policy. This example shows that in order to let a negotiation party P know what might be the next
appropriate message, a disclosure tree should have at least one leaf node that is a credential that
the other party wants P to disclose. We have the following definition:

Definition 6.7. Disclosure tree T’s evolvable leaves for party Pa, denoted evolvable(T,P4), are
the set of leaf nodes C of T such that either C = R and P4 4s the server, or C appears in a policy
that Pp disclosed to Pa. If evolvable(T,P4) # 0, we say T is evolvable for P4.

The disclosure tree in figure 6 is evolvable for both P4 and Ppg.
If a negotiation reaches a point where every leaf node of some disclosure tree is unlocked, then
the tree is a full tree and corresponds to a safe disclosure sequence.

Definition 6.8. Let P4 be a negotiation party, T be a disclosure tree, and S be a set of policies
and credentials. If every resource in evolvable(T,Pa) is unlocked by credentials in S, then we say
T is semi-full with § for P4. Further, we say T is full with S iff every leaf node of T is unlocked
by credentials in S.
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Figure 6: view(Sd) where S; = {R +— Cpi ANCpa,Cpr — Ca1 A CAQ}

6.2 Strategy Caution and Strategy Set Generators

If F is a strategy family, then intuitively, every strategy in F always discloses enough information
to keep the negotiation moving towards success, if success is possible. If F is also closed, then F
must also contain those strategies that disclose only the minimal amount of information needed to
continue negotiations. Therefore it is helpful to formally define a relationship between strategies
based on the information they disclose.

Definition 6.9. Given two negotiation strategies fi1 and fa, if for all possible inputs G, L, and R
to f1 and fo, we have

Vm € fo(G,L,R) 3m' € f1(G, L, R) such that m' Cm
then we say fi s at least as cautious as fy, denoted as f1 < fo or fo = f1.

Caution defines a partial order between strategies. Intuitively, if fo = f; then fo always discloses
at least as much information as f; does.

Definition 6.10. Given a strategy f, the set of strategies generated by f, denoted StraSet(f), is
the set F = {f'|f' = f}. f is called the generator of F.

As we discussed in section 6.1, during a trust negotiation, evolvable trees give guidance on what a
party needs to disclose in the next message so that the whole negotiation advances towards potential
success. If there is no evolvable tree, then a cautious party will choose to end the negotiation even
if the policies of the two parties allow success. Therefore, to ensure that negotiations succeed
whenever possible, a strategy must ensure that the other party will have an evolvable tree when
the other party needs to make its next disclosure. The only exception is when the strategy knows
that no disclosure tree can evolve into a full tree.

7 The Disclosure Tree Strategy Family

We present the disclosure tree strategy (DTS), then prove that DTS generates a closed family.
Throughout this section, we assume that G = (m;,...,my) is a sequence of messages such that
m; # 0 and R ¢ m; for 1 <7 < k. We assume L4 and Lp are the local policies of parties P4 and
‘Pp respectively, and Sg = ;<< mi. Without loss of generality, we assume P4 will send the next
message to Pp. o

Definition 7.1. The Disclosure Tree Strategy (DTS for short) is a strategy DTS(G, L4, R) such
that:
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1) DTS(G,La, R) = {0} if and only if view(SgU La) = 0 or view(Sq) has no evolvable tree for
Pa.

2) Otherwise, DTS(G,La, R) contains all messages m' such that one of the following conditions
holds:

e m' = {R}, if R is unlocked by credentials in Sy;

e m' is a non-empty set of credentials and policies such that view(Sq Um') contains at
least one evolvable tree for Pp, and no non-empty proper subset of m' has this property.

Condition 1) states under what circumstances the DTS strategy will terminate the negotiation
with a failure message. Condition 2) guarantees that the other party will have an evolvable tree.
Therefore, the other party can always send a message back that evolves a disclosure tree. Thus, no
failure message will be sent unless there is no disclosure tree at all, in which case the negotiation
cannot succeed anyway. Formally, we have the following theorems:

Theorem 7.1. The set of strategies generated by DTS is a family. O
Theorem 7.2. If a strategy f and DTS are compatible, then f > DTS. O

We call the family generated by DTS the DTS family. By theorems 7.1 and 7.2, we get the
following corollary immediately.

Corollary 7.1. The DTS family is closed. O

As we mentioned in section 5, one advantage of a strategy family can be the ability to adopt
different strategies from a family in different phases of the negotiation. Correct interoperability is
guaranteed as long as both parties’ strategies are from the same family.

Definition 7.2. Let fi and fs be two strategies. A strategy f' is a hybrid of fi and f> if VG, L, R,
fI(G,LR) g fl(G5L1R) U f?(G,L,R) and fl # fl and f’ # f?-

If a security agent adopts different DTS family strategies in different phases of trust negotiation,
it is equivalent to adopting a hybrid of those strategies.

Theorem 7.3. Let f1 and fa be strategies in the DTS family and let f' be a hybrid of fi and fs.
Then f' is also in the DTS family. ]

Therefore, as long as both parties uses strategies from the DTS family, they can switch between
different practical strategies as often as they like, and trust negotiation will still succeed whenever
possible.

Although disclosure trees are a useful tool for understanding strategy properties, it would
require exponential time and space to materialize all the disclosure trees during a negotiation. For-
tunately, many strategies in the DTS family are quite efficient. We present two efficient strategies:
TrustBuilder-Simple and TrustBuilder-Relevant, which are both in the DTS family.

The TrustBuilder-Simple strategy puts all undisclosed policies and unlocked credentials in the
next message to the other party. If all the policies and unlocked credentials have already been
disclosed, it will send a failure message. Its pseudocode is shown in figure 7(a).

We say a credential C is syntactically relevant to resource R iff C appears in R’s policy, or
C appears in the policy of a credential C' that is relevant to R. In contrast to TrustBuilder-
Simple, the TrustBuilder-Relevant strategy (figure 7(b)) discloses a credential C’s policy only if C
is syntactically relevant to R. Similarly, TrustBuilder-Relevant only discloses syntactically relevant
unlocked credentials.
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TrustBuilder-Simple strategy
Input:
G = (mu,...,mk): a sequence of safe disclosure messages.
L: the local resources and policies of this party.
R: the resource to which access was originally requested.
Output:
A set containing a single disclosure message m.
Pre-condition:
R has not been disclosed and my, # 0.

Let P4 be the local party and Pp the remote party.
Sa = Ulgigk M5

m={;
For every local credential C that is unlocked by Sy
m=mU {C};

For every local locked credential C
if (C’s policy P is not a denial policy)
then m = m U {P};
For every policy P’ € Sq such that P' ¢ L
For every credential that C' appears in P’ and has a denial policy
m=mU{C « false};
m = m — Sg;
return {m};

(a) Pseudocode for the TrustBuilder-Simple strategy

TrustBuilder-Relevant-Strategy
Input:
G = (ma,...,my): a sequence of safe disclosure messages.
L: the local resources and policies of this party.
R: the resource to which access was originally requested.
Output:
A set containing a single disclosure message m.
Pre-condition:
R has not been disclosed and my # 0.

Let P4 be the local party and Pp the remote party.
Sa = U cich mis
m = {§;
For every local credential C syntactically relevant to R
if (C is unlocked by Sg)
then m = muU {C};
else m = m U {C's policy};
For every policy P’ € Sy such that P' ¢ L
For every credential C' that appears in P’ and has a denial policy
m=mU{C « false};
m = m — Sg;
return {m};

(b) Pseudocode for the TrustBuilder-Relevant strategy

Figure 7: Pseudocode for two strategies in the DTS family
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Proposition 7.1. If a credential C appears in a disclosure tree for R, then C is relevant to R.
Theorem 7.4. TrustBuilder-Simple and TrustBuilder-Relevant belong to the DTS family. O

Theorem 7.5. The computation costs of TrustBuilder-Simple and TrustBuilder-Relevant in the
whole process of trust negotiation are bounded by O(nm), where n is the total number of credentials
and m is the total size of the policies of both parties. O

The worst-case behavior of TrustBuilder-Simple and TrustBuilder-Relevant occurs when every
credential belonging to one party appears in every policy belonging to the other party, and each
disclosure message discloses a single credential or policy.

8 Summary and Future Work

Instead of proposing another strategy for automated trust negotiation, this paper focuses on guaran-
teeing interoperability between different strategies. We first propose a very simple trust negotiation
protocol for the TrustBuilder trust negotiation architecture. Then we study strategies that adhere
to this protocol. We introduce the concepts of strategy families and closed sets of strategies. If two
strategies are in the same strategy family, then they will always correctly interoperate with each
other. Closure expresses the maximality of a strategy family, i.e., if we add another strategy to a
closed family, the resulting set of strategies is no longer a family. In practice, we want to identify
closed families of strategies because they give negotiation participants maximum freedom in choos-
ing the strategies appropriate for them. We introduce the concept of disclosure trees and identify
the natural mapping between full disclosure trees and safe credential disclosure sequences. We then
propose a strategy called the disclosure tree strategy (DTS), and prove that all the strategies that
are no more cautious than DTS form a closed strategy family. Finally we give examples of practical
strategies from the DTS family.

In this paper, we assume a credential’s policy is freely available, which means it can be shown
to others whenever requested. However, some policies contain sensitive information that should be
protected from arbitrary disclosure. We are currently investigating strategy families for use in this
situation and with non-propositional policy languages. We are also implementing TrustBuilder for
testbed experimentation in e-commerce applications, and investigating more sophisticated defini-
tions of “minimal” disclosure for use with practical policies.
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The appendix is not part of the paper, and is only provided to aid the reviewers.

A  Proofs of Theorems

Proof of theorem 6.1: By induction on n.

When n = 1, resource R is unprotected. We can have a disclosure tree with only the root node,
and the theorem holds.

Assume when n > k > 1, the theorem holds.

When n = k + 1, since resource R is eventually granted, we can find a minimal solution set
{Cj;,...,Cj} for R among the credentials in G. Since G is a non-redundant safe disclosure se-
quence, for each Cj;, where 1 < i < t, (C1,...,C};) is a safe disclosure sequence with length no
more than k. By the induction hypothesis, there is a non-redundant disclosure tree T; whose root
is Cj; and all the nodes are credentials appearing in (C1,...,C};), which is a prefix of G. And for
every credential pair (C7,Cy) such that C{ is an ancestor of Cj in T}, C} is disclosed before C! in
(C1,...,Cy;). By adding R as the root and all the roots of T;, 1 <4 < ¢, as children of R, we get a
full non-redundant disclosure tree that satisfies conditions 1) and 2) in the theorem. Therefore the
theorem holds. O

Proof of theorem 6.2: Let G = (C1,...,Cr = R) be the post-order traversal of T. According to
the definition of full disclosure trees, when a credential is disclosed in G, either it is unprotected
or one of its minimal solution sets has been disclosed. Therefore its disclosure is safe, and G is
a safe disclosure sequence. For every C; in G, if there exists a credential disclosure C; such that
Jj <tand Cj = C; in G, then we remove C; from G. The resulting disclosure sequence is safe and
non-redundant. O

Proof of theorem 6.3: By induction on n, the number of nodes in 7. When n = 1, with only a
root node, T is redundant.

When n = 2, because T is a redundant tree, it must have only one edge (R, R). Since T is a
full tree, R is unprotected. So the tree with only the root node R is a non-redundant full disclosure
tree, and T is not a legal disclosure tree.

Assume when n = k, where k > 2, the theorem holds.

When n = k + 1, let credential C' appear more than once in the path from the root to a leaf
node. Suppose the path is (R, C1,...,C; = C',...,C; = C',...,Ck) such that C; and C; are the
first and last appearance of C’ in the path respectively. Since T is a full disclosure tree, the subtree
rooted at Cj is also a full tree. We replace the subtree rooted at C; by the one rooted at C;. The
resulting disclosure tree is still full but with at most k¥ nodes. By the induction hypothesis, there
is a full disclosure tree T that is not redundant. O

Proof of theorem 7.1: Suppose P4 and Pp adopt strategies fi and fo respectively, and fy and fo
belong to StraSet(DTS). We need to prove that if the negotiation fails, there is no safe disclosure
sequence leading to the grant of access to the originally requested resource R.

When the negotiation fails, without loss of generality, we assume it is P4 that sends the failure
message. Suppose that before P4 sends the failure message, G = (my,...,my) is the sequence of
exchanged messages. Therefore my, is the last message in G that Pp sent to P4. Let L4 and Lp
be the local policies of P4 and Pp respectively, and Sg = U;<;<; mi- Since § € f1(G, L4, R) and
fi = DTS, we must have DTS(G, L4, R) = {0}. According to definition 7.1, one of the following
must be true:
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1. view(Sg U L4) = 0.
2. view(Sy) has no evolvable tree for Py4.

When 2) holds but 1) does not hold, we must have
DTS((mL cee ?mk-‘l)7 Lp, R) = {@}

Otherwise, since fo > DTS and R & my, my must be a superset of a minimal set m’ of cre-
dentials and policies such that view((Sq — mg) U m') has at least one evolvable tree for Pa.
Therefore, view(Sy) also has at least one evolvable tree for P4, which contradicts 2). Since
DTS((ma,...,mg-1),Lp,R) = {0}, that means that before Pp sent my, one of 1) or 2) was
true. Since at the beginning of the negotiation, 2) is not satisfied, we know that in some previous
stage of the negotiation, 1) must have been true.

When 1) holds, that means no tree will evolve to be a full disclosure tree. So there is no safe
disclosure sequence leading to the grant of access to R. 0

Proof of theorem 7.2: By contradiction.
Suppose that P4 is the local party. Assuming DTS £ f, then there exists a choice of G, L4
and R such that

Im' € f(G, L, R) such that Vm € DTS(G,L4,R),m € m'
Then the following must be true:
e view(SqUL4) # 0.
e view(Sy) has at least one evolvable tree for Pg4.

Otherwise, according to definition 7.1, DT'S(G, L4, R) = {0} and § C m'. Also, we have R ¢ m/'.
Otherwise, R is unlocked by Sg and {R} € DTS(G,La,R). {R} Cm'.

DTS(G, L4, R) contains all the minimal sets m of local policies and credentials such that
view(Sq U m) has at least one evolvable tree for Pp. Since DTS £ f, view(S; U m') has no
evolvable tree for Pp. Thus, after sending m', DTS at Pp will send a failure message and end
the negotiation. However, since view(Sq U L) # 0, there is a tree in view(Sq U L4) whose leaves
{C1,...,C} are all evolvable for Pp and none of those credentials’ policies is in Sg. So if all those
credentials are unprotected, then there exists a full disclosure tree, which means that f and DTS
are not compatible, leading to a contradiction. O

Proof of theorem 7.3: VG,L, R, let f'(G,L,R) = {m,...,my}. Since f’ is a hybrid of f; and

fo, m; € f1(G, L, R) or m; € fo(G, L, R), for all 1 < 7 < k. Because both f; and fs are in the DTS
family, there exists m' € DTS(G, L, R) such that m’ C m;. Thus, f' = DTS. O

Proof of theorem 7.4: Because TrustBuilder-Simple > TrustBuilder-Relevant, it suffices to show
that DTS < TrustBuilder-Relevant.

Suppose P4 is the local party and TrustBuilder-Relevant(G, L4, R) = {m}. If m = 0, that
means P4 has no relevant policies and unlocked credentials other than those in S;. Then view(Sy)
must have no evolvable trees for P4. Otherwise, suppose T € view(Sy) has an evolvable leaf C for
P4. Then, neither C nor C’s policy is in Sz and C is syntactically relevant to R. If C' is unlocked by
credentials in Sy, then C € m. Otherwise, C’s policy is in m. Both cases contradict the assumption
that m, = 0.
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When m # 0, if DTS(G,L4,R) = {0}, then § C m. Otherwise, according to definition
7.1, we must have view(Sy U L4) # 0 and view(Sy) contains at least one evolvable tree for
Pa. Suppose m = {di,...,ds},1 < t. If view(S,) already has an evolvable tree for Pg, then
{d1} is a non-empty minimal set such that view(Sy U {d1}) has an evolvable tree for Pg. So
{d1} € DTS(G,L4a,R) and {d1} C m. On the other hand, if view(Sy) has no evolvable tree for
Pg, consider any m' € DTS(G, L, R). Let d be any disclosure in m'. If d is the disclosure of
a credential C, then C must appear in a disclosure tree in view(S; U (m' — {d})). Otherwise,
view(Sq U (m' — {d})) = view(Ss U m') which contradicts the fact that m’ is a minimal set. By
similar arguments, when d is a disclosure of credential C’s policy, we also have C appearing in
a disclosure tree in view(Sy U (m’ — {d})). By proposition 7.1, C is syntactically relevant to R.
Therefore, d € m, which means m’' C m. Thus, DTS < TrustBuilder-Relevant. Od

Proof of theorem 7.5: For TrustBuilder-Simple, every time there are new credential disclosures in
an incoming message, TrustBuilder-Simple needs to scan each resource’s policy and check whether
it is unlocked. Since there are at most n credential disclosures, such cost is bounded by O(nm). To
determine when to disclose a denial policy, TrustBuilder-Simple only needs to scan each incoming
policy disclosure once, at a cost of no more than O(m). Therefore, the total computation cost of
TrustBuilder-Simple during trust negotiation is bounded by O(nm).

Compared to TrustBuilder-Simple, besides the cost for checking whether resources are unlocked
(with cost of O(nm)) and when to disclose a denial policy (with cost of O(m)), the only extra cost
of TrustBuilder-Relevant is to determine whether a credential is relevant to R. At the beginning of
the negotiation, R is the only known resource that is relevant to R. During the negotiation, every
time there is a policy disclosure of a resource relevant to R, TrustBuilder-Relevant can scan the
policy and mark all the credentials appearing in it as relevant. Similarly, every time TrustBuilder
discloses a policy of a relevant resource, it can also mark those credentials appearing in the policy
as relevant. By this way, in the whole negotiation process, all the policies are scanned only once
to determine relevant resources. Therefore the cost is O(m). Thus, the total computation cost of
TrustBuilder-Relevant is also bounded by O(nm). |

B An Example of Trust Negotiation

Consider an online medical record service. The service allows patients to access their electronic
medical records from Busey Hospital over the web. Now suppose a child’s parent wants to access
her child’s medical records at the online service. The policies of the parent and the online service
are shown in figure 8. Table 1 gives the interpretations of the credentials appearing in figure 8.

This example fits most naturally into a simple first-order language. In fitting it into a propo-
sitional format, we have trimmed off much of its natural complexity. In particular, several of
the individual credentials (Sg, S3, C2, C3, CsandCs) would naturally be represented by credential
chains, where the issuer of one credential is the owner of the next credential in the chain. For
example, birth certificates are issued by county clerks, who are certified by their countries to their
county clerks. In turn, the counties are certified by their states, possessions, or territories. The
states/possessions/territories are certified by the Federal government, which is at the top of this
particular set of credential chains.

Further, authentication of the requesters to one of the principals mentioned in the credentials
is a key aspect of many of the policies here, but is not included in this propositional format. For
example, in the policy R « (C1 AC2) V(C7 A (C3V C5V Cg)) V Cy, the requester must authenticate
to the owner of C; and Cy, and the owner of Ci must be the patient whose records are being
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requested, if the first clause is to be satisfied. To satisfy the second clause, the requester must
authenticate to one of the parents in the child’s birth certificate, or the guardian in the guardian
credential, or one of the parents in the adoption credential. Further, the child named in the
adoption/guardianship/birth certificate must be the owner of the child patient ID, and must be
the patient whose records have been requested. To satisfy the third clause, the requester must
authenticate to the owner of the employee ID.

The Client’s Policies
Cr « S7V Sg VvV (S4A89)
Co + (S3AS1)V Ss
C3 « (S3AS1)V S5
Cr < S7V S6V (84 A Sa)

Cg + true

The Online Medical Records Service’s Policies

Sef —] R (Ci AC2)V(Cr A(CsV Cs Vv Ce))V Ca
\08. 51 ¢ true

‘SQ/"E“,// S2 ¢ Cg

S3 + true

w‘ S4 « true

S

Figure 8: An example of access control policies and a safe disclosure sequence.

Credential | Interpretation

R patient’s medical record from Busey Hospital, stored
at the Online Medical Record Service
S TrustE membership credential
S mailing address certification issued by the US Post
Office, showing an address in Illinois
S accreditation credential issued by the US Government
to medical facilities
Sy affiliate organization credential issued by Busey Hospital
Ss US Government agency credential issued by the US Government
Sg employee credential issued by Blue Cross Blue Shield of Illinois
S7 employee ID issued by Busey Hospital
Cy adult patient ID credential issued by Busey Hospital
Cy adult’s birth certificate (age over 21)
Cs child’s birth certificate (age under 21)
Cy employee ID issued by Busey Hospital to a medical practitioner
Cs legal guardianship credential issued by a state court
Cs adoption credential issued by a state court
Cr child patient ID credential issued by Busey Hospital
Cs Reduce Junk Mail Alliance membership credential

Table 1: Interpretations of credentials appearing in figure 8.
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APPENDIX G

Interoperable Strategies in Automated Trust
Negotiation

Abstract

Automated trust negotiation is an approach to establishing trust between strangers through
the exchange of digital credentials and the use of access control policies that specify what
combinations of credentials a stranger must disclose in order to gain access to each local service
or credential. We introduce the concept of a trust negotiation protocol, which defines the ordering
of messages and the type of information messages will contain. To carry out trust negotiation,
a party pairs its negotiation protocol with a trust negotiation strategy that controls the exact
content of the messages, i.e., which credentials to disclose, when to disclose them, and when to
terminate a negotiation. There are a huge number of possible strategies for negotiating trust,
each with different properties with respect to speed of negotiations and caution in giving out
credentials and policies. In the autonomous world of the Internet, entities will want the freedom
to choose negotiation strategies that meet their own goals, which means that two strangers who
negotiate trust will often not use the same strategy. To date, only a tiny fraction of the space
of possible negotiation strategies has been explored, and no two of the strategies proposed so
far will interoperate. In this paper, we define a large set of strategies called the disclosure tree
strategy (DTS) family. Then we prove that if two parties each choose strategies from the DTS
family, then they will be able to negotiate trust as well as if they were both using the same
strategy. Further, they can change strategies at any point during negotiation. We also show that
the DTS family is closed, i.e., any strategy that can interoperate with every strategy in the DTS
family must also be a member of the DTS family. We also give examples of practical strategies
that belong to the DTS family and fit within the TrustBuilder architecture and protocol for
trust negotiation.

1 Introduction

With billions of users on the Internet, most interactions will occur between strangers, i.e., entities
that have no pre-existing relationship and may not share a common security domain. In order
for strangers to conduct secure transactions, a sufficient level of mutual trust must be established.
For this purpose, the identity of the participants (e.g., their social security number, fingerprint,
institutional tax ID) will often be irrelevant to determining whether or not they should be trusted.
Instead, the properties of the participants, e.g., employment status, citizenship, group membership,
will be most relevant. Traditional security approaches based on identity require a new client to pre-
register with the service, in order to obtain a local login, capability, or credential before requesting
service; but the same problem arises when the client needs to prove on-line that she is eligible
to register with the service. E-commerce needs a more scalable approach that allows automatic
on-line pre-registration, or does away entirely with the need for pre-registration. We believe that
automated trust establishment is such a solution.

With automated trust establishment, strangers establish trust by exchanging digital credentials,
the on-line analogues of paper credentials that people carry in their wallets: digitally signed asser-
tions by a credential issuer about the credential owner. A credential is signed using the issuer’s
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private key and can be verified using the issuer’s public key. A credential describes one or more at-
tributes of the owner, using attribute name/value pairs to describe properties of the owner asserted
by the issuer. Each credential also contains the public key of the credential owner. The owner can
use the corresponding private key to answer challenges or otherwise demonstrate ownership of the
credential. Digital credentials can be implemented using, for example, X.509 [10] certificates.

While some resources are freely accessible to all, many require protection from unauthorized
access. Access control policies can be used for a wide variety of “protected” resources, such as
services accessed through URLs, roles in role-based access control systems, and capabilities in
capability-based systems. Since digital credentials themselves can contain sensitive information,
their disclosure will often also be governed by access control policies. For example, suppose that
a landscape designer wishes to order plants from Champaign Prairie Nursery (CPN). She fills out
an order form on the web, checking an order form box to indicate that she wishes to be exempt
from sales tax. Upon receipt of the order, CPN will want to see a valid credit card or her account
credential issued by CPN, and a current reseller’s license. The designer has no account with CPN,
but she does have a digital credit card. She is willing to show her reseller’s license to anyone, but
she will only show her credit card to members of the Better Business Bureau. Therefore, when
protected credentials are involved, a more complex procedure needs to be adopted to establish trust
through negotiation.

2 Related Work

Credential-based authentication and authorization systems fall into three groups: identity-based,
property-based, and capability-based. Originally, public key certificates, such as X.509 [10] and
PGP [17], simply bound keys to names, and X.509 v.3 certificates later extended this binding to
general properties (attributes). Such certificates form the foundation of identity-based systems,
which authenticate an entity’s identity or name and use it as the basis for authorization. Identity
is not a useful basis for our aim of establishing trust among strangers.

Systems have emerged that use property-based credentials to manage trust in decentralized,
distributed systems [8, 12, 15]. Johnson et al. [12] use attribute certificates (property-based creden-
tials) and use-condition certificates (policy assertions) for access control. Use-condition certificates
enable multiple, distributed stakeholders to share control over access to resources. In their archi-
tecture, the policy evaluation engine retrieves the certificates associated with a user to determine
if the use conditions are met. Their work could use our approach to protect sensitive certificates.

The Trust Establishment Project at the IBM Haifa Research Laboratory [8] has developed a
system for establishing trust between strangers according to policies that specify constraints on
the contents of public-key certificates. Servers can use a collector to gather supporting credentials
from issuer sites. Each credential contains a reference to the site associated with the issuer. That
site serves as the starting point for a collector-controlled search for relevant supporting credentials.
Security agents in our work could adopt the collector feature, and we could use their policy definition
language. Their work could use our approach to protect sensitive credentials and gradually establish
trust.

Capability-based systems manage delegation of authority for a particular application. Capability-
based systems are not designed for establishing trust between strangers, since clients are assumed
to possess credentials that represent authorization of specific actions with the application server.
In the capability-based KeyNote system of Blaze et al. [2, 3], a credential describes the conditions
under which one principal authorizes actions requested by other principals. KeyNote policies del-
egate authority on behalf of the associated application to otherwise untrusted parties. KeyNote
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credentials express delegation in terms of actions that are relevant to a given application. KeyNote
policies do not interpret the meaning of credentials for the application. This is unlike policies
designed for use with property-based credentials, which typically derive roles from credential at-
tributes. The IETF Simple Public Key Infrastructure [9] uses a similar approach to that of KeyNote
by embedding authorization directly in certificates.

Bonatti el at. [4] introduced a uniform framework and model to regulate service access and
information release over the Internet. Their framework is composed of a language with formal
semantics and a policy filtering mechanism. Our work can be integrated with their framework.

The P3P standard [14] focuses on negotiating the disclosure of a user’s sensitive private in-
formation based on the privacy practices of the server. Trust negotiation is generalized to base
disclosure on any server property of interest to the client that can be represented in a credential.
The work on trust negotiation focuses on certified properties of the credential holder while P3P is
based on data submitted by the client that are claims the client makes about itself. Support for
both kinds of information in trust negotiation is warranted.

SSL [7], the predominant credential-exchange mechanism in use on the web, and its successor
TLS [5, 6] support credentials exchange during client and server authentication. The protocol is
suited for identity-based credentials and would need extension to make it adaptable to property-
based credentials. Needed additions include protection for sensitive server credentials and a way
for the client to explain its policies to the server.

Islam et al. [11] show how to control downloaded executable content using policy graphs. Their
system assumes that all the appropriate credentials accompany requests for downloaded content.
Their work could be extended using our approach to disclose policies and conduct negotiations.

The first trust negotiation strategies proposed included a naive strategy that discloses credentials
as soon as they are unlocked and discloses no policy information, as well as a strategy that discloses
credentials only after each party determines that trust can be established, based on reviewing
the other party’s policies [15]. Yu et al. [16] introduced a new strategy that would succeed
whenever success was possible and had certain efficiency guarantees. In [13], consideration was
given for sensitive policy information in several strategies that established trust gradually through
the introduction of policy graphs. The fact that none of the strategies proposed in this earlier
work will interoperate demonstrates the need for trust negotiation protocols and strategy families
to support interoperability between negotiation strategies.

3 Trust Negotiation

In our approach to automated trust establishment, trust is established incrementally by exchanging
credentials and requests for credentials, an iterative process known as frust negotiation. While a
trust negotiation protocol defines the ordering of messages and the type of information messages
will contain, a trust negotiation strategy controls the exact content of the messages, i.e., which
credentials to disclose, when to disclose them, and when to terminate a negotiation. Figure 1
introduces our TrustBuilder architecture for trust negotiation. Each participant in the negotiation
has an associated security agent (SA) that manages the negotiation. The security agent mediates
access to local protected resources, i.e., services and credentials. We say a credential or access
control policy is disclosed if it has been sent to the other party in the negotiation, and that a service
is disclosed if the other party is given access to it. Disclosure of protected resources is governed by
access control policies. During a negotiation, the security agent uses a local negotiation strategy
to determine what local resources to disclose next, and to accept new disclosures from the other

party.
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Figure 1: An architecture for automated trust negotiation. A security agent that manages local
protected resources and their associated access control policies represents each negotiation partic-
ipant. A access control policy specifies what resources the other party needs to disclose in order
to gain access to a local resource, as indicated by the dotted lines in the figure. Trust negotiation
middleware enables negotiation strategy interoperability.

The architecture in figure 1 supports a single protocol for establishing trust, and assumes
there will be a variety of negotiation strategies that must be supported. All trust negotiation
strategies share the goal of building trust through an exchange of digital credentials that leads to
obtaining access to a protected resource. Once enough trust has been established that a particular
credential can be disclosed to the other party, a local negotiation strategy must determine whether
the credential is relevant to the current stage of the negotiation. Different negotiation strategies
will use different definitions of relevance, involving tradeoffs between computational cost, the length
of the negotiation, and the number of disclosures.

From the handful of trust negotiation strategies proposed so far in the literature, it is clear that
there are endless possible variations in how to negotiate trust. Rather than exploring the space of
all possible strategies one strategy at a time, our goal in this paper is to characterize a broad class
of strategies (section 6) and design a strategy-independent, language-independent trust negotiation
protocol (section 5) that ensures their interoperability within the TrustBuilder trust negotiation
architecture.

4 Access Control Policies

We assume that the information contained in access control policies {policies, for short) and cre-
dentials can be expressed as finite sets of statements in a formal language with a well-defined
semantics. XML or logic programming languages with appropriate semantics may be suitable lan-
guages in practice [8, 1]. For convenience, we will assume that the original language allows us to
describe the meaning of a set of statements as the set of all models that satisfy the set of statements,
in the usual logic sense. We say that a set X of statements satisfies a set of statements P if and
only if P is true in all models of X. For purely practical reasons, we require that the language
be monotonic, i.e., if a set of statements X satisfies policy P, then any superset of X will also
satisfy P; that way, once a negotiation strategy has determined that the credentials disclosed by a
participant satisfy the policy of a resource, the strategy knows that the same policy will be satisfied
for the rest of the negotiation, and does not have to be rechecked.
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Figure 2: An example of access control policies and a safe disclosure sequence which establishes
trust between the server and the client.

In this paper, we will treat credentials and services as propositional symbols. Each of these re-
sources has exactly one access control policy, of the form C + F¢(Ch, ..., Cy), where Fo(Cy,...,Cy)
is a Boolean expression involving only credentials Cj,...,Cy that the other party may possess,
Boolean constants true and false, the Boolean operators V and A, and parentheses as needed.
C; is satisfied if and only if the other party has disclosed credential C;. We assume that we can
distinguish between local and remote resources (by renaming propositional symbols as necessary).
Resource C' is unlocked if its access control policy is satisfied by the set of credentials disclosed
by the other party. A resource is unprotected if its policy is always satisfied. The denial policy
C + false means that either the party does not possess C, or else will not disclose C under any
circumstances. A party implicitly has a denial policy for each credential it does not possess. If the
disclosure of a set S of credentials satisfies resource R’s policy, then we say S is a solution set for
R. Further, if none of S’s proper subsets is a solution set for R, we say S is a minimal solution set
for B. The size of a policy is the number of symbol occurrences in it.

Given sequence G = (Cy,...,Cy) of disclosures of protected resources, if each C; is unlocked at
the time it is disclosed, 1 < ¢ < n, then we say G is a safe disclosure sequence. The goal of trust
negotiation is to find a safe disclosure sequence G = (C4,...,C, = R), where R is the resource to
which access was originally requested. When this happens, we say that trust negotiation succeeds.
IfC;=C;and 1 <i < j < n, then we say G is redundant. Since the language used to represent
policies and credentials is monotonic, we can remove the later duplicates from a redundant safe
disclosure sequence and the resulting sequence is still safe. Figure 2 shows a safe disclosure sequence
for the landscape designer’s purchase from CPN discussed earlier. A more complex example can be
found in Appendix B. It is important to note that this example, and our algorithms that follow,
rely on lower levels of software to perform the functions associated with disclosure of a credential:
verification of its contents, checks for revocation as desired, checks of validity dates, authentication
of ownership, etc., as is normally done for X.509 certificates. The necessary calls to these functions,
and the translation of credentials into the language used to represent policies, are not shown in our
algorithms.

5 The TrustBuilder Protocol and Strategy Families

Previous work on trust negotiation has not explicitly proposed any trust negotiation protocols,
instead defining protocols implicitly by the way each negotiation strategy works. This is one reason
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TrustBuilder_handle.disclosure_message (m, R)
Input: m is the last disclosure message received from the remote party.

R is the resource to which the client originally requested access.
TrustBuilder_checkfor_termination(m, R). //Stop negotiating, if appropriate.
TrustBuilder next.message(m, R).

End of TrustBuilder_handle_disclosure.message.

TrustBuilder_next_message(m, R)

// First, let the local strategy suggest what the next message should be.

Let G be the disclosure message sequence so far.

Let L be the local resources and policies.

Sm = Local_strategy(G, L, R).

// Sm contains the candidate messages the local strategy suggests.

Choose any single message m' from Sp,.

Send m' to the remote party.

TrustBuilder_check for_termination(m’, R). //Stop negotiating, if appropriate.
End of TrustBuilder_next_message.

TrustBuilder_check_for_termination(m, R)

If m is the empty set § and this is not the beginning of the negotiation,
Then negotiations have failed. Stop negotiating and exit.

If m contains the disclosure of R,
Then negotiations have succeeded. Stop negotiating and exit.

End of TrustBuilder.check_for_termination.

Figure 3: Pseudocode for the TrustBuilder protocol. The negotiation is triggered when the client
asks to access a protected resource owned by the server. After rounds of disclosures, either one
party sends a failure message and ends the negotiation, or the server grants the client access.

why no two different previously proposed strategies can interoperate — their underlying protocols
are totally different.

We remedy this problem by defining a simple protocol for TrustBuilder. Formally, a message in
the TrustBuilder protocol is a set {Rj,..., Ry} where each R; is a disclosure of a local credential,
a local policy, or a local resource. When a message is the empty set §, we also call it a failure
message. Further, to guarantee the safety and timely termination of trust negotiation no matter
what policies and credentials the parties possess, the TrustBuilder protocol requires the negotiation
strategies used with it to enforce the following three conditions throughout negotiations:

1. If a message contains a denial policy disclosure C + false, then C must appear in a previously
disclosed policy.

2. A credential or policy can be disclosed at most once.

3. Every disclosure must be safe.

Before the negotiation starts, the client sends the original resource request message to the server
indicating its request to access resource R. This request triggers the negotiation, and the server
invokes its local security agent with the call TrustBuilder_handle disclosure_message(@, R). Then
the client and server exchange messages until either the service R is disclosed by the server or one
party sends a failure message. The whole negotiation process is shown in figure 3.

In the remainder of this paper, unless otherwise noted, we discuss only strategies that can be
called from the TrustBuilder protocol and satisfy the three conditions above. A formal definition
of a negotiation strategy is given below.
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Definition 5.1. A strategy is a function f : {G,L, R} — Sp, where R is the resource to which the
client originally requested access, G = (my,...,my) is a sequence of disclosure messages such that
mi #0 and R ¢ m; for 1 <i <k, L is the set of local resources and policies, and Sy, is a set of
disclosure messages. Further, every disclosure in a message in Sy, must be of a local resource or
policy, as must be all the disclosures in mg_o;, for 1 < k —2i < k. The remaining disclosures in G
are of remote resources and policies.

Intuitively, based on the disclosures made so far, plus the local resources and policies, a ne-
gotiation strategy will suggest the next set of disclosures to send to the other party. Note that
a strategy returns a set of possible disclosure messages, rather than a single message. Practical
negotiation strategies will suggest a single next message, but the ability to suggest several possible
next messages will be very convenient in our formal analysis of strategy properties, so we include
it both in the formal definition of a negotiation strategies and also in the protocol pseudocode in
figure 3.

Definition 5.2. Strategies f4 and fp are compatible if whenever there exists a safe disclosure
sequence for a party Pa to obtain access to a resource owned by party Py, the trust negotiation will
succeed when Py uses fa and Pp uses fp. If fa = fp, then we say that f4 is self-compatible.

Definition 5.3. A strategy family is a set F of mutually compatible strategies, i.e., Vf1 € F,fa €
F, f1 and fo are compatible. We say a set F of strategies is closed if given a strategy f', if f' is
compatible with every strategy in F, then f' € F.

One obvious advantage of strategy families is that a security agent (SA) can choose strategies
based on its needs without worrying about interoperability, as long as it negotiates with other
SAs that use strategies from the same family. As another advantage, under certain conditions, an
SA does not need to stick to a fixed strategy during the entire negotiation process. It can adopt
different strategies from the family in different phases of the negotiation. For example, during
the early phase, since the trust between two parties is very limited, an SA may adopt a cautious
strategy for disclosing credentials. When a certain level of trust has been established, in order
to accelerate the negotiation, the SA may adopt a less cautious strategy. However, without the
closure property, a family may not be large enough for practical use. As an extreme example,
given any self-compatible strategy f, {f} is a strategy family. The closure property guarantees the
maximality of a strategy family.

In general, the notions of strategy families and closed sets of strategies are incomparable, in the
sense that neither of them implies the other. For example, if a strategy f’s output is {m}, where
m is a message containing all the undisclosed local policies and unlocked credentials, then it is easy
to prove that f is self-compatible. Then {f} is a family, but by no means closed. On the other
hand, consider the strategy f' whose output is always {#}. Obviously f’ is not compatible with
any strategies. The strategy set {f'} is not a family but is closed.

We end this section with two simple propositions.

Proposition 5.1. Any subset of a strategy family is also a family.

Proposition 5.2. If a strategy family F is a proper subset of another family, then F is not closed.

6 Characterizing Safe Disclosure Sequences

In this section, we define the concepts that we use to describe the progress of a negotiation and
to characterize the behavior of different strategies. In the remainder of the paper, we use R to
represent the resource to which access was originally requested.
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Figure 4: Example disclosure trees for a set of policies

6.1 Disclosure Trees
Definition 6.1. A disclosure tree for R is a finite tree satisfying the following conditions:
1. The root represents R.

2. Ezcept for the root, each node represents a credential. When the contezt is clear, we refer to
a node by the name of the credential it represents.

3. The children of a node C form a minimal solution set for C.

When all the leaves of a disclosure tree T are unprotected credentials, we say T is a full disclosure
tree. Given a disclosure tree T, if there is a credential appearing twice in the path from a leaf node
to the root, then we call T a redundant disclosure tree.

Figure 4 shows example disclosure trees. Note that 75 is redundant and 7} is a full disclosure
tree.

The following theorems state the relationship between disclosure trees and safe disclosure se-
quences that lead to the granting of access to resource R. Proofs of all theorems can be found in
Appendix A.

Theorem 6.1. Given a non-redundant safe disclosure sequence G = (Cy,...,Cn = R), there is a
full non-redundant disclosure tree T such that both of the following hold:

1. The nodes of T are a subset of {C1,...,Cp}.

2. For all credential pairs (C}, Cy) such that C} is an ancestor of Ch in T, Ch is disclosed before
Ci in G. O

Theorem 6.2. Given a full disclosure tree for R, there is a non-redundant safe disclosure sequence
ending with the disclosure of R. O

By theorems 6.1 and 6.2, we get the following corollary immediately.
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Corollary 6.1. Given a safe disclosure sequence G = (C1,...,Cn = R), there is a full non-
redundant disclosure tree T such that:

1. The credential nodes of T are a subset of {C1,...,Cp},

2. For all credential pairs (C},Cy) such that C{ is an ancestor of CY in T, the first disclosure
of Ch in G 1s before the first disclosure of Cf.

Without loss of generality, from now on, we consider only non-redundant disclosure sequences.

Since there is a natural mapping between safe disclosure sequences and disclosure trees, during
the negotiation, theoretically one could determine whether a potential credential or policy disclosure
is helpful by examining all the disclosure trees for R. At the beginning of a negotiation, before
disclosures begin, the only relevant disclosure tree for the client contains a single node R. As the
negotiation proceeds, other trees may become relevant. The following definitions help us describe
the set of relevant trees.

Definition 6.2. Given a disclosure tree T and a set of S, of credentials, the reduction of T by
Se, reduction(T, S, ), is the disclosure tree T' which is obtained by removing all the subtrees rooted
at a node representing resource C € S.. Given a set Sy of disclosure trees, reduction(Sy, S¢) =
{reduction(T,S;) | T € S;}.

If S. is the set of credential disclosures made so far, then reducing T by S, prunes out the part of
the negotiation that has already succeeded. Intuitively, if a credential C' has been disclosed, then we
already have a safe disclosure sequence for C. We do not need to disclose additional credentials or
policies in order to get a full disclosure tree rooted at C. An example of a disclosure tree reduction
is shown in figure 5(a).

Definition 6.3. Given a disclosure tree T' and a policy set Sp containing no denial policies, the
expansion of T' by Sp, expansion(T, Sp), is the set of all disclosure trees T; such that

1. T is a subgraph of T;, i.e., there exists a set S of credentials such that reduction(T;,S) =T.
2. For each edge (C1,Cs) in Ty, if (C1,C2) is not an edge of T, then Cy’s policy is in Sp.
3. For each leaf node C of T;, either Sp does not contain C’s policy, or T; is redundant.

Given a set of disclosure trees St, expansion(Sy, Sp) = Ures, expansion(T, Sp).

A disclosure tree can expand when a party receives new policy disclosures. An example of a
disclosure tree expansion is shown in figure 5(b).

Definition 6.4. Given a set Sy of disclosure trees and a set Sgp of denial policies, the denial
pruning of S; by Sap, denoted prunegeniai(St, Sap), is the set

{T| T € S; and T contains no resource whose policy is in Sgp}.

Since a full disclosure tree contains only credentials that the two parties possess, if a disclosure
tree node represents a credential with a denial policy, that tree cannot evolve into a full disclosure
tree, and is no longer relevant.

Definition 6.5. Given a set S; of disclosure trees, the redundancy pruning of Sy, denoted pruneregundant(St),
is the set
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Figure 5: Examples of operations on disclosure trees
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{T|T €S; and T is not a redundant disclosure tree}.

The rationale for redundancy pruning will be shown after we introduce more operations on
disclosure trees. Examples of denial and redundancy pruning are shown in figure 5(c).

Definition 6.6. Given a disclosure tree T and a set Sgy of denial policies, Sy of non-denial policies,
and S, of credentials, let S = Sq, U S, US.. The evolution of T by S, denoted evolution(T, S), is

Pruneredundant (Prunedenia (reduction(expansion(T, Sp), Sc), Sap)-

Given a set Sy of disclosure trees, evolution(S;, ) = Urpeg, evolution(T, S). As a special case,
when T s the disclosure tree containing only a root node R, then we say evolution(T,S) is the
view of S, denoted view(S).

During the negotiation, let S be the set of credentials and policies disclosed so far and L be
the local policies of a negotiation party. Then view(S U L) contains all the relevant disclosure trees
which can be seen by this party. An example view is shown in figure 5(d). Sometimes even though
a tree may evolve into a full tree later in the negotiation, it is nonetheless redundant and can be
removed by redundancy pruning, whose correctness is guaranteed by the following theorem.

Theorem 6.3. Let T be a full but redundant disclosure tree. Then there is a full disclosure tree T'
that is not redundant. .

Suppose S is the set of currently disclosed credentials and policies. By theorem 6.3, if a redun-
dant tree may evolve into a full tree, then the corresponding non-redundant tree is already included
in view(S). So the redundant trees are not relevant for the remainder of the negotiation.

In order to make a negotiation successful whenever the policies of the two negotiation parties
allow, the negotiation strategy should make sure no possible full disclosure trees have been over-
looked. A disclosure tree also tells a party what may contribute to the success of a negotiation. As
an example, suppose party Pp requests service R from party P4. Sy, the set of disclosures so far,
and view(Sy) are shown in figure 6. Suppose now it is P4’s turn to send a message to Pg. From
the disclosure tree, it is clear to an outside observer that credentials C4; and C 42 must be disclosed
if the negotiation is to succeed. So P4’s negotiation strategy can now disclose C41’s and/or C42’s
policy. This example shows that in order to let a negotiation party P know what might be the next
appropriate message, a disclosure tree should have at least one leaf node that is a credential that
the other party wants P to disclose. We have the following definition:

Definition 6.7. Disclosure tree T'’s evolvable leaves for party Pa, denoted evolvable(T,P4), are
the set of leaf nodes C of T such that either C = R and P4 is the server, or C appears in a policy
that Pg disclosed to Py. If evolvable(T,P4) # 0, we say T is evolvable for P4.

The disclosure tree in figure 6 is evolvable for both P4 and Ppg.
If a negotiation reaches a point where every leaf node of some disclosure tree is unlocked, then
the tree is a full tree and corresponds to a safe disclosure sequence.

Definition 6.8. Let P4 be a negotiation party, T be a disclosure tree, and S be a set of policies
and credentials. If every resource in evolvable(T,P4) is unlocked by credentials in S, then we say
T is semi-full with S for P4. Further, we say T is full with S iff every leaf node of T is unlocked
by credentials in S.
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Figure 6: view(S4) where Sq = {R < Cp1 A Cp2,Cp1 < Ca1 A Cas}

6.2 Strategy Caution and Strategy Set Generators

If F is a strategy family, then intuitively, every strategy in F always discloses enough information
to keep the negotiation moving towards success, if success is possible. If F is also closed, then F
must also contain those strategies that disclose only the minimal amount of information needed to
continue negotiations. Therefore it is helpful to formally define a relationship between strategies
based on the information they disclose.

Definition 6.9. Given two negotiation strategies fi and fq, if for all possible inputs G, L, and R
to fi and fa, we have

Vm € fo(G, L, R) 3m’ € f1(G, L, R) such that m' Cm
then we say fi is at least as cautious as fo, denoted as f1 < fo or fo = f1.

Caution defines a partial order between strategies. Intuitively, if fo > fi then fo always discloses
at least as much information as f; does.

Definition 6.10. Given a strategy f, the set of strategies generated by f, denoted StraSet(f), is
the set F = {f'|f' = f}. f is called the generator of F.

As we discussed in section 6.1, during a trust negotiation, evolvable trees give guidance on what a
party needs to disclose in the next message so that the whole negotiation advances towards potential
success. If there is no evolvable tree, then a cautious party will choose to end the negotiation even
if the policies of the two parties allow success. Therefore, to ensure that negotiations succeed
whenever possible, a strategy must ensure that the other party will have an evolvable tree when
the other party needs to make its next disclosure. The only exception is when the strategy knows
that no disclosure tree can evolve into a full tree.

7 The Disclosure Tree Strategy Family

We present the disclosure tree strategy (DTS), then prove that DTS generates a closed family.
Throughout this section, we assume that G = (mq,...,my) is a sequence of messages such that
m; # 0 and R ¢ m; for 1 <1 < k. We assume L4 and Lp are the local policies of parties P4 and
Pp respectively, and Sy = U, <;<; mi. Without loss of generality, we assume P4 will send the next
message to Pp. o

Definition 7.1. The Disclosure Tree Strategy (DTS for short) is a strategy DTS{(G, L4, R) such
that:
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1) DTS(G,La, R) = {0} if and only if view(Sy4 U L4) = 0 or view(Sy) has no evolvable tree for
Pa.

2) Otherwise, DTS(G, L4, R) contains all messages m' such that one of the following conditions
holds:

e m' = {R}, if R is unlocked by credentials in S4;

e m' is a non-empty set of credentials and policies such that view(Sq U m') contains at
least one evolvable tree for Pp, and no non-empty proper subset of m' has this property.

Condition 1) states under what circumstances the DTS strategy will terminate the negotiation
with a failure message. Condition 2) guarantees that the other party will have an evolvable tree.
Therefore, the other party can always send a message back that evolves a disclosure tree. Thus, no
failure message will be sent unless there is no disclosure tree at all, in which case the negotiation
cannot succeed anyway. Formally, we have the following theorems:

Theorem 7.1. The set of strategies generated by DTS is a family. 0
Theorem 7.2. If a strategy f and DTS are compatible, then f = DTS. O

We call the family generated by DTS the DTS family. By theorems 7.1 and 7.2, we get the
following corollary immediately.

Corollary 7.1. The DTS family is closed. O

As we mentioned in section 5, one advantage of a strategy family can be the ability to adopt
different strategies from a family in different phases of the negotiation. Correct interoperability is
guaranteed as long as both parties’ strategies are from the same family.

Definition 7.2. Let fy and f2 be two strategies. A strategy f' is a hybrid of f1 and fs if VG, L, R,
f(G,L,R) C fi(G,L,R)U f2(G,L,R) and f' # fi and f' # fa.

If a security agent adopts different DTS family strategies in different phases of trust negotiation,
it is equivalent to adopting a hybrid of those strategies.

Theorem 7.3. Let fi and fo be strategies in the DTS family and let ' be a hybrid of fi and fo.
Then f' is also in the DTS family. O

Therefore, as long as both parties uses strategies from the DTS family, they can switch between
different practical strategies as often as they like, and trust negotiation will still succeed whenever
possible.

Although disclosure trees are a useful tool for understanding strategy properties, it would
require exponential time and space to materialize all the disclosure trees during a negotiation. For-
tunately, many strategies in the DTS family are quite efficient. We present two efficient strategies:
TrustBuilder-Simple and TrustBuilder-Relevant, which are both in the DTS family.

The TrustBuilder-Simple strategy puts all undisclosed policies and unlocked credentials in the
next message to the other party. If all the policies and unlocked credentials have already been
disclosed, it will send a failure message. Its pseudocode is shown in figure 7(a).

We say a credential C is syntactically relevant to resource R iff C' appears in R’s policy, or
C appears in the policy of a credential C’ that is relevant to R. In contrast to TrustBuilder-
Simple, the TrustBuilder-Relevant strategy (figure 7(b)) discloses a credential C’s policy only if C
is syntactically relevant to R. Similarly, TrustBuilder-Relevant only discloses syntactically relevant
unlocked credentials.
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TrustBuilder-Simple strategy
Input:
G = {ma,...,my): a sequence of safe disclosure messages.
L: the local resources and policies of this party.
R: the resource to which access was originally requested.
Cutput:
A set containing a single disclosure message m.
Pre-condition.:
R has not been disclosed and my # 0.

Let P4 be the local party and Pp the remote party.
Sa = Uy cicr ™5

m =
For every local credential C that is unlocked by Sy
m=muU{C}

For every local locked credential C
if (C’s policy P is not a denial policy)
then m = mU {P};
For every policy P’ € Sq such that P' ¢ L
For every credential that C appears in P’ and has a denial policy
m=mU{C « false};
m=m -~ S4;
return {m};

(a) Pseudocode for the TrustBuilder-Simple strategy

TrustBuilder-Relevant-Strategy
Input:
G = (ma,...,mk): a sequence of safe disclosure messages.
L: the local resources and policies of this party.
R: the resource to which access was originally requested.
Output:
A set containing a single disclosure message m.
Pre-condition:
R has not been disclosed and my, # 0.

Let P4 be the local party and Pp the remote party.
Sa = Ulgigk 5
m =,
For every local credential C syntactically relevant to R
if (C is unlocked by Sq)
then m = mU {C},
else m = m U {C’s policy};
For every policy P' € Sq such that P' ¢ L
For every credential C that appears in P’ and has a denial policy
m=mU{C « false};
m=m — Sg;
return {m};

(b) Pseudocode for the TrustBuilder-Relevant strategy

Figure 7: Pseudocode for two strategies in the DTS family
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Proposition 7.1. If a credential C appears in a disclosure tree for R, then C is relevant to R.
Theorem 7.4. TrustBuilder-Simple and TrustBuilder-Relevant belong to the DTS family. O

Theorem 7.5. The computation costs of TrustBuilder-Simple and TrustBuilder-Relevant in the
whole process of trust negotiation are bounded by O(nm), where n is the total number of credentials
and m is the total size of the policies of both parties. O

The worst-case behavior of TrustBuilder-Simple and TrustBuilder-Relevant occurs when every
credential belonging to one party appears in every policy belonging to the other party, and each
disclosure message discloses a single credential or policy.

8 Access Control Policy Graphs

In our discussion so far, we made the assumption that each resource C is protected by a single
access control policy which can be shown to others who requires access to C. However, as shown in
the following examples, in some situations, even an access control policy itself may contain sensitive
information and needs to be protected from revealing to strangers.

Example 1. A corporate web server manages information for a collaborative project between the
corporation and a secret business partner. The information is accessible only to members of
the project team from both companies. To obtain authorized access, team members must sub-
mit employee credentials that show that they work in one of the departments associated with
the project. Since the access control policy includes information about a business relationship
and a secret project, disclosing that policy to a stranger is undesirable.

A solution to this problem is for the server to begin trust negotiation by requesting an
employee credential, which the server checks to see if the client works for the corporation
or for the business partner, without the server divulging sensitive information that might
disclose the nature of the information the server manages.

Example 2. A corporate web server provides a protected service intended for vice-presidents in
Company A and all employees in Company B. Revealing the vice-president constraint to
strangers unnecessarily raises interest or concerns regarding the rationale behind the con-
straint, especially by those who fail to satisfy the constraint. This problem can be solved in
the same way as example 1.

Example 3. A web server provides access to sensitive corporate information for the corporation’s
suppliers. The corporation issues a credential to each supplier organization. Suppliers in turn
issue credentials locally to their employees. Suppliers are autonomous, and each supplier has
its own approach to issuing credentials. For instance, some suppliers may issue employee
credentials at the corporate level, while others will issue site credentials at the site level.
Suppliers will formulate their own policies about which credentials can be used to authenticate
their employees. This situation creates the need for supplier-specific access control policies.
If the trust negotiation system supports a single access control policy that combines all the
supplier-specific policies, outsiders could learn about the security requirements of all the
trusted suppliers. In addition, the trusted suppliers would learn about each other’s policies,
which may not be desirable. The solution is for the server initially to ask for a credential
chain that includes the supporting supplier credential. Once the server knows which supplier
the client is associated with, the server can release the supplier-specific access control policy
information.
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Example 4. A web server for a multinational corporation automatically supports benefits enroll-
ment and payroll processing services. The available credentials and associated policies vary
dramatically from country to country. To ensure that its policies are scalable and maintain-
able, and to keep message size reasonably small, the server requests a credential indicating
the client’s country of residence. Then it provides the policy associated with that country
only.

These scenarios show that the mere mention of sensitive credentials, and the constraints imposed
upon them in an access control policy, can leak sensitive corporate information. Adversaries might
make use of that information in attempts to gain illicit access. Even when a policy is disclosed
to an entity that eventually proves to be trustworthy, disclosing all the constraints to it may be
undesirable. Subdivision of policies also has advantages for performance and policy maintainability.
Therefore, an access control policy should also be regarded as a resource and its disclosure needs to
be protected by some other access control policies. A resource may be guarded by layers of access
control policies instead of only a single policy. We introduce the concept of access control policy
graphs (policy graphs, for short) to represent such layers of access control policies.

In the following of the paper, a protected resource can be a service, a policy, or a credential. A
policy graph for a protected resource R is a finite directed acyclic graph with a single source node
S and a single sink R. (As mentioned in section 4, we assume that the name of a node is the name
of the resource it represents.) All the nodes except R represent policies that specify the properties
that a negotiation participant may be required to demonstrate in order to gain access to K. Each
sensitive credential and service will have its own separate policy graph. Each policy represented as
a node in a policy graph G implicitly also has its own graph — the maximum subgraph of G for
which that policy node is the sole sink. It is safe for a party to disclose a resource R only if there
is a path from the source to R in R’s policy graph such that every policy node (except R when
R represents a policy) in the path is satisfied by the disclosed credentials so far. It is easy to see
that when a resource is protected only by a single policy, as we discussed in previous sections, its
policy graph will only have two nodes: a sink node (which represents the resource) and a source
node (which represents the policy). Example policy graphs for examples 1-4 are shown in figure 8.

Although policy graphs are motivated by sensitive policy information, they have other advan-
tages in cases when a policy graph is extremely large, as in example 4. Only the relevant subset of
the graph need be disclosed, potentially saving communications and storage resources. For example
4 in figure 8, a client will first be sent the policy asking for an IBM employee credential. If one
is supplied, the client is then asked for a passport. (the policy does not compare the names on
the two credentials, instead assuming that anyone who can pass the authentication challenges for
both credentials is the individual referred to by both credentials.) The server then immediately
determine which successor node is satisfied, based on the passport’s issuing country, without fur-
ther communication with the client. The process will then move on to the appropriate subtree.
Example 3 in figure 8 is quite similar; here we see how the subtrees join together again. In example
1 in figure 3, the companies Microsoft and IBM are not mentioned in the source node, instead
appearing only in its immediate successors. The employee credential supplied to satisfy the source
node will allow the successor nodes to be evaluated without further communication with the client,
who will not see the policies in the successor nodes. (If the company names should not be secret,
then the source node should also require that the company name be IBM or Microsoft.) Example
2 in the same figure is very similar.

Note that the policies of those examples in figure 8 are represented in a language based on first-
order logic without quantifiers or negation. To comply with the discussion in previous sections,
in the remainder of the paper, we switch to propositional logic without negation. This simplicity
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allows us to focus on the properties of the negotiation strategies rather than on explanations of our
handling variables, negation, graph semantics, and determining whether a credential appears in a
formula.

9 Extension to Disclosure Trees

After we introduce the concept of policy graphs, the goal of trust negotiation remains the same:
finding a safe disclosure sequence which leads to the disclosure of the requested resource R. The
only difference, from the negotiations point of view, is that instead of disclosing a credential’s policy
in a message, a party may disclose several policies for the same credential. Note that, according to
TrustBuilder protocol, a party only informs the other party that a policy is for a certain resource
R and does not reveal any relations between policies for the same resource. Therefore, during
the negotiation, generally it is very hard for a party to collect complete information about the
other party’s policy graphs. (We say “generally” because when a policy graph is very simple, for
example, a chain, then in the process of trust negotiation, by observing a party’s messages, one may
get complete structural information of a resource’s policy graph.) When a party discloses enough
credentials to satisfy a resource’s policy of the other party, it may not expect that the resource is
unguarded and can be disclosed. Instead, it only means that the current layer of that resource’s
policy graph is satisfied. What can be disclosed later is the next layer of the resource’s policy
graph.

As shown in section 6.1, disclosure trees are a straight forward way to represent the current
status during a trust negotiation. Here we need to extend the definition of disclosure trees to fit
it into the context of policy graphs. Suppose R is a credential or service and G, is R’s policy
graph. Then all the nodes except the sink node represent policies. We call them policy nodes. We
assume that each policy node has a unique id (which can either be assigned by the owner P of the
credential or by the other participants when it receives policies from P). Therefore, given a policy
node n, we can tell which resource’s policy graph n belongs to.

Definition 9.1. A graph disclosure tree (disclosure tree for short when the contezt is clear) for R
8 a finite tree satisfying the following conditions:

1. The root represents R.

2. Ezcept for the root, each node represents either a credential or a policy. When the context is
clear, we refer to a credential node (resp. policy node) by the name of the credential (resp. id
of the policy) it represents. We also consider the root R as a credential node.

3. A credential node C is either a leaf node or it has only one child which is a policy node Ny
such that Ny appears in C’s policy graph.

4. A policy node Ny is always an internal node whose children are all credential nodes. Np’s
children form a minimal solution set to the policy represented by Np.

Given a disclosure tree T, if there is a credential appearing twice in the path from a leaf node to
the root, then we call T' a redundant disclosure tree.

Comparing with definition 6.1, we introduce policy nodes into disclosure trees which reflect the
relationship between a policy and a resource’s policy graph.

116



Definition 9.2. Let R be a resource with policy graph G,. Given a set S, of credentials, if there is
a path from the source to the sink node R in G, such that each policy node in the path is satisfied
by Sc, then we say S is a solution set to R. Further, if any proper subset of S, is not a solution
set to R, then we say S, is a minimal solution set to R.

Definition 9.3. Given a set S, of credentials with denial policies, we say a resource R is unsolvable
regarding S¢ if

1. R is with a denial policy; Or
2. Every minimal solution set to R contains at least one credential in S,.

3. every minimal solution set to R contains at least one credential which is unsolvable regarding

Se.

As discussed in previous sections, when a resource is protected by only a single policy, a denial
policy is sent only if a resource is not available (i.e., a party does not have that resource or does
not want to disclose it to others under any circumstances). This requirement is valid because once
a resource R’'s policy is disclosed, by checking all the unavailable resources that are already known,
the other party will know for sure whether R can be possibly unlocked. For example, suppose R’s
policy is R < C; A Cs and R is held by P4. If Ps does not possess credential Ci, then after
receiving R’s policy, Pg will know for sure that R’s policy can not be satisfied. However, in the
context of policy graphs, a resource may be associated with several policies. A party does not need
to disclose all its unlocked policies to the other party. Therefore, during trust negotiation, even all
the disclosed unlocked policies of a resource R are eventually unable to be satisfied, the other party
can not conclude that resource R can not be unlocked. So, in order to inform the other party that
a resource R can not be unlocked, a party has to send a denial policy of R.

Similar to section 6.1, we are going to define some operations on extended disclosure trees.

Definition 9.4. Given a disclosure tree T and a set of S; of credentials, the reduction of T' by S,
reduction(T, S.), is the disclosure tree T' which is obtained by removing all the subtrees rooted at a
node representing resource C € S; and all the subtrees rooted at a policy node that is satisfied by
Sc. Given a set St of disclosure trees, reduction(St, S.) = {reduction(T,S;) | T € S;}.

Definition 9.5. Given a disclosure tree T and a policy set Sy containing no denial policies, the
expansion of T' by Sp, expansion(T, Sp), is the set of all disclosure trees T; such that

1. T is a subgraph of T;, i.e., there exists a set S of credentials such that reduction(T;,S) =T.

2. For each edge (P,C) in T; such that P is a policy node and C is a credential node, if (P,C)
is not an edge of T, then P is a policy in Sp.

3. For each edge (C, P) of T; such that P is a policy node and C is a credential node, if (C, P)
is not an edge of T, then P is in Sy and P is a policy node in C'’s policy graph.

4. For each leaf node C of T;, either S, does not contain a policy which is a policy node in C’s
policy graph, or T; is redundant.

Given a set of disclosure trees Sy, expansion(Sy, Sp) = Ures, ezpansion(T, Sp).

Definition 9.6. Given a set S; of disclosure trees and a set Sqp of denial policies, the denial
pruning of S; by Sap, denoted prunegenial(St, Sap), is the set
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{T|T € S; and T contains no resource whose policy is in Sgp}.

Definition 9.7. Given a set S; of disclosure trees, the redundancy pruning of S;, denoted prune,equndant(St),
is the set

{T|T €S, and T is not a redundant disclosure tree}.

Definition 9.8. Given a disclosure tree T and a set Sy of denial policies, Sy, of non-denial policies,
and S of credentials, let S = Sg, U Sp U S,. The evolution of T by S, denoted evolution(T, S), is

PrUNeredundant (Prunegenial (reduction(expansion(T, Sp)a Se)s Sdp) :

Given a set Sy of disclosure trees, evolution(S;, S) = Urpeg, evolution(T,S). As a special case,
when T is the disclosure tree containing only a root node R, then we say evolution(T,S) is the
view of S, denoted view(S).

Definition 9.9. Given a set Sy of disclosure trees and a set Sgp of denial policies, the denial
pruning of S; by Syp, denoted prunegenial(Si, Sap), s the set

{T|T € S; and T contains no resource whose policy is in Sgp}.

Definition 9.10. Given a set S of disclosure trees, the redundancy pruning of Sy, denoted prune,equndant(St),
is the set

{T | T € S¢ and T is not a redundant disclosure tree}.

Definition 9.11. Given a disclosure tree T and a set Sy, of denial policies, Sy, of non-denial policy
nodes, and S of credentials, let S = S3US,US.. The evolution of T by S, denoted evolution(T, S),
18

Pruneredundant (PTUNEdenial (Teduction(expansion(T, S, p )s Se)s Sdp) .

Given a set Sy of disclosure trees, evolution(S;, S) = Upeg, evolution(T, S). As a special case,
when T is the disclosure tree containing only a root node R, then we say evolution(T,S) is the
view of S, denoted view(S).

Since a disclosure tree’s leaves are always credential nodes, the definition of evolvable leaves for
a negotiation party is still valid.

The intuition behind the above operations is quite similar to that of section 6.1. Therefore we
are not going to give further explanation in the rest of the paper.

10 Strategy Families for Access Control Policy Graphs

In this section, we are going to present a strategy family for trust negotiation when resources
are protected by policy graphs. Throughout this section, we assume that G = {my,...,mg) is a
sequence of messages such that m; # 0 and R ¢ m; for 1 < i < k. We assume L4 and Lp are
the local policies graphs of party P4 and Pg respectively, and Sg = U< < mi- Without loss of
generality, we assume P4 will send the next message to Pg. o

Definition 10.1. The Disclosure Tree Strategy for policy graphs (DTSG for short) is a strategy
DTSG(G, L, R) such that:
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1. DTSG(G, La,R) = {0} if and only if R is held by P4 and R is unsolvable regarding S, where
S¢ = {C | There is a denial policy for C in Sq} or view(Sy) has no evolvable trees for P4.

2. Otherwise, DTSG(G, L, R) contains all messages m' such that one of the following condi-
tions holds:

e m' = {R}, if R is unlocked by credentials in Sy;

e m' is a non-empty set of credentials and policies such that view(Sq U m') contains at
least one evolvable tree for Pg, and no non-empty proper subset of m' has this property.

Theorem 10.1. The set of strategies generated by DTSG is a family. O

Theorem 10.2. If a strategy f and DTSG are compatible, then f = DTSG. ]
We call the family generated by DT'SG the DTSG family.

Corollary 10.1. The DTSG family is closed. O

Theorem 10.3. Let fi; and fao be strategies in the DTSG family and let f' be a hybrid of f1 and
fo. Then f' is also in the DTS family. a

11 Summary and Future Work

Instead of proposing another strategy for automated trust negotiation, this paper focuses on guaran-
teeing interoperability between different strategies. We first propose a very simple trust negotiation
protocol for the TrustBuilder trust negotiation architecture. Then we study strategies that adhere
to this protocol. We introduce the concepts of strategy families and closed sets of strategies. If two
strategies are in the same strategy family, then they will always correctly interoperate with each
other. Closure expresses the maximality of a strategy family, i.e., if we add another strategy to a
closed family, the resulting set of strategies is no longer a family. In practice, we want to identify
closed families of strategies because they give negotiation participants maximum freedom in choos-
ing the strategies appropriate for them. We introduce the concept of disclosure trees and identify
the natural mapping between full disclosure trees and safe credential disclosure sequences. We then
propose a strategy called the disclosure tree strategy (DTS), and prove that all the strategies that
are no more cautious than DTS form a closed strategy family. We also give examples of practical
strategies from the DTS family.

Further, by giving informative examples, we show that, in some situations, a policy itself may
also contain sensitive information and need to be protected by unauthorized access. We introduced
the concept of policy graphs to handle such situations. We extended the concept of disclosure {rees
such that it can reflect the relationship between resources and their policy nodes. Therefore, the
DTS family is naturally extended for trust negotiation where resources are protected by policy
graphs instead of a single policy.

We are currently investigating strategy families for use with non-propositional policy languages
which is more expressive. We are also implementing TrustBuilder for testbed experimentation in
e-commerce applications, and investigating more sophisticated definitions of “minimal” disclosure
for use with practical policies.
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Appendix

A Proofs of Theorems

Proof of theorem 6.1: By induction on n.

When n = 1, resource R is unprotected. We can have a disclosure tree with only the root node,
and the theorem holds.

Assume when n > k > 1, the theorem holds.

When n = k£ + 1, since resource R is eventually granted, we can find a minimal solution set
{Cj1,...,C4} for R among the credentials in G. Since G is a non-redundant safe disclosure se-
quence, for each Cj;, where 1 < i < ¢, (C1,...,C},;) is a safe disclosure sequence with length no
more than k. By the induction hypothesis, there is a non-redundant disclosure tree 7; whose root
is Cj; and all the nodes are credentials appearing in (C1,...,C};), which is a prefix of G. And for
every credential pair (Cf, C3) such that C] is an ancestor of C4 in T}, C} is disclosed before C} in
(C1,...,Cj};). By adding R as the root and all the roots of T;, 1 <4 < ¢, as children of R, we get a
full non-redundant disclosure tree that satisfies conditions 1) and 2) in the theorem. Therefore the
theorem holds. O

Proof of theorem 6.2: Let G = (Cy,...,Cr = R) be the post-order traversal of T. According to
the definition of full disclosure trees, when a credential is disclosed in G, either it is unprotected
or one of its minimal solution sets has been disclosed. Therefore its disclosure is safe, and G is
a safe disclosure sequence. For every C; in G, if there exists a credential disclosure C; such that
j <iand Cj = C; in G, then we remove C; from G. The resulting disclosure sequence is safe and

non-redundant. O

Proof of theorem 6.3: By induction on n, the number of nodes in T. When n = 1, with only a
root node, T is redundant.

When n = 2, because T is a redundant tree, it must have only one edge (R, R). Since T is a
full tree, R is unprotected. So the tree with only the root node R is a non-redundant full disclosure
tree, and T is not a legal disclosure tree.

Assume when n = k, where & > 2, the theorem holds.

When n = k + 1, let credential C’ appear more than once in the path from the root to a leaf
node. Suppose the path is (R,C,...,C; = C',...,Cj = C’,...,C) such that C; and C; are the
first and last appearance of C’ in the path respectively. Since T is a full disclosure tree, the subtree
rooted at Cj is also a full tree. We replace the subtree rooted at C; by the one rooted at C;. The
resulting disclosure tree is still full but with at most & nodes. By the induction hypothesis, there
is a full disclosure tree T" that is not redundant. O

Proof of theorem 7.1: Suppose P4 and Pp adopt strategies f1 and fo respectively, and f; and fo
belong to StraSet(DTS). We need to prove that if the negotiation fails, there is no safe disclosure
sequence leading to the grant of access to the originally requested resource R.

When the negotiation fails, without loss of generality, we assume it is P4 that sends the failure
message. Suppose that before P4 sends the failure message, G = (my,...,mg) is the sequence of
exchanged messages. Therefore my is the last message in G that Pp sent to Pa. Let L4 and Lp
be the local policies of P4 and Pp respectively, and Sg = U;<j<x ™. Since @ € f1(G, La, R) and
f1 = DTS, we must have DTS(G, La, R) = {#}. According to definition 7.1, one of the following
must be true:
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1. view(SqULa) = 0.
2. view(Sy) has no evolvable tree for P4.

When 2) holds but 1) does not hold, we must have
DTS((ml, AN ,mk_.l), LB, R) == {@}

Otherwise, since fo > DTS and R € my, mg must be a superset of a minimal set m’ of cre-
dentials and policies such that view((Sy — myg) U m’) has at least one evolvable tree for Pj4.
Therefore, view(Sy) also has at least one evolvable tree for P4, which contradicts 2). Since
DTS((my,...,mg_1),Lp,R) = {0}, that means that before Pp sent my, one of 1) or 2) was
true. Since at the beginning of the negotiation, 2) is not satisfied, we know that in some previous
stage of the negotiation, 1) must have been true.

When 1) holds, that means no tree will evolve to be a full disclosure tree. So there is no safe
disclosure sequence leading to the grant of access to R. 0

Proof of theorem 7.2: By contradiction.
Suppose that P4 is the local party. Assuming DTS £ f, then there exists a choice of G, L4
and R such that

Im’ € f(G, La, R) such that Vm € DTS(G, L, R),m € m'
Then the following must be true:
e view(SqUL4) #0.
e view(Sy) has at least one evolvable tree for Pj4.

Otherwise, according to definition 7.1, DT'S(G, L4, R) = {0} and § C m'. Also, we have R & m/'.
Otherwise, R is unlocked by Sg and {R} € DTS(G,L4,R). {R} C m/.

DTS(G, L, R) contains all the minimal sets m of local policies and credentials such that
view(Sq U m) has at least one evolvable tree for Pp. Since DTS 2 f, view(S; Um') has no
evolvable tree for Pp. Thus, after sending m', DTS at Pp will send a failure message and end
the negotiation. However, since view(Sq U L4) # 0, there is a tree in view(Sq U L4) whose leaves
{Ch,...,Ct} are all evolvable for Pp and none of those credentials’ policies is in Sy. So if all those
credentials are unprotected, then there exists a full disclosure tree, which means that f and DTS
are not compatible, leading to a contradiction. O

Proof of theorem 7.3: VG, L, R, let f'(G,L,R) = {m1,...,mi}. Since f’ is a hybrid of f; and
fa, m; € f1(G, L, R) or m; € fo(G, L, R), for all 1 <14 < k. Because both f; and f, are in the DTS
family, there exists m’' € DT'S(G, L, R) such that m' C m;. Thus, f' = DTS. |

Proof of theorem 7.4: Because TrustBuilder-Simple > TrustBuilder-Relevant, it suffices to show
that DTS =< TrustBuilder-Relevant.

Suppose P4 is the local party and TrustBuilder-Relevant(G, L4, R) = {m}. If m = @, that
means P4 has no relevant policies and unlocked credentials other than those in Sy. Then view(Sg)
must have no evolvable trees for P4. Otherwise, suppose T € view(Sy) has an evolvable leaf C for
Pa4. Then, neither C nor C’s policy is in S4 and C is syntactically relevant to R. If C is unlocked by
credentials in Sy, then C' € m. Otherwise, C’s policy is in m. Both cases contradict the assumption
that m, = 0.
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When m # @, if DTS(G,La,R) = {0}, then § C m. Otherwise, according to definition
7.1, we must have view(Sg U Lg) # 0 and view(Sy) contains at least one evolvable tree for
Pa. Suppose m = {di,...,di},1 < t. If view(Sy) already has an evolvable tree for Pz, then
{d1} is a non-empty minimal set such that view(Sy U {di}) has an evolvable tree for Pp. So
{d1} € DTS(G,L4,R) and {d1} C m. On the other hand, if view(S;) has no evolvable tree for
Pp, consider any m' € DTS(G,La,R). Let d be any disclosure in m'. If d is the disclosure of
a credential C, then C must appear in a disclosure tree in view(Sy U (m' — {d})). Otherwise,
view(Sq U (m' — {d})) = view(Ss U m') which contradicts the fact that m’ is a minimal set. By
similar arguments, when d is a disclosure of credential C’s policy, we also have C appearing in
a disclosure tree in view(Sg U (m' — {d})). By proposition 7.1, C is syntactically relevant to R.
Therefore, d € m, which means m’ C m. Thus, DTS < TrustBuilder-Relevant. O

Proof of theorem 7.5: For TrustBuilder-Simple, every time there are new credential disclosures in
an incoming message, TrustBuilder-Simple needs to scan each resource’s policy and check whether
it is unlocked. Since there are at most n credential disclosures, such cost is bounded by O(nm). To
determine when to disclose a denial policy, TrustBuilder-Simple only needs to scan each incoming
policy disclosure once, at a cost of no more than O(m). Therefore, the total computation cost of
TrustBuilder-Simple during trust negotiation is bounded by O(nm).

Compared to TrustBuilder-Simple, besides the cost for checking whether resources are unlocked
and when to disclose a denial policy, the only extra cost of TrustBuilder-Relevant is to determine
whether a credential is relevant to R. At the beginning of the negotiation, R is the only known
resource that is relevant to RE. During the negotiation, every time there is a policy disclosure of
a resource relevant to R, TrustBuilder-Relevant can scan the policy and mark all the credentials
appearing in it as relevant. Similarly, every time TrustBuilder discloses a policy of a relevant re-
source, it can also mark those credentials appearing in the policy as relevant. By this way, in the
whole negotiation process, all the policies are scanned only once to determine relevant resources.
Therefore the cost is O(m). Thus, the total computation cost of TrustBuilder-Relevant is also
bounded by O(nm). |

Proof of theorem 10.1: Suppose P4 and Pp adopt strategies f; and fo respectively, and fi
and f2 belong to StraSet(DTS). We need to prove that if the negotiation fails, there is no safe
disclosure sequence leading to the grant of access to the originally requested resource R.

When the negotiation fails, without loss of generality, we assume it is P4 that sends the failure
message. Suppose that before P4 sends the failure message, G = (m1,...,myg) is the sequence of
exchanged messages. Therefore my is the last message in G that Pg sent to P4. Let L4 and Lp
be the local policy graphs of P4 and Pg respectively, and Sy = U;j<j<i mi. Since @ € f1(G,La, R)
and fi = DTSG, we must have DTSG(G, L4, R) = {#}. According to definition 10.1, one of the
following must be true:

1. R is unsolvable regarding S, where S. = {C|There is a denial policy for C in Sg4}.
2. view(S,) has no evolvable tree for P4.

When 2) holds but 1) does not hold, we must have DTSG((m1,...,mg, ), Lp, R) = {#}. Otherwise,
since fo = DTSG and R & my, my must be a superset of a minimal set m’ of credentials and policies
such that view((Sg—myi)Um’) has at least one evolvable tree for P4. Therefore, view(S;) also has at
least one evolvable tree for P4, which contradicts 2). Since DT SG((ma,...,mk-1), L, R) = {0},
that means that before Pp sent mk, one of 1) or 2) was true. Since at the beginning of the
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negotiation, 2) is not satisfied, we know that in some previous stage of the negotiation, 1) must
have been true.

When 1) holds, that means R is unsolvable. So there is no safe disclosure sequence leading to
the grant of access to R. 0

Proof of theorem 10.2: By Contradiction.

Suppose that P 4 is the local party. Assume DT'SG 4 f, the there exists a choice of G, L4 and
R such that

3Im’ € f(G, La, R) such that forallm € DTSG(G,La,R),m € m'
Then the following must be true:
e R is not unsolvable regarding S, = {C|ThereisadenialpolicyofCinSq}.
e view(Sy) has at least one evolvable tree for P 4.

Otherwise, according to definition 10.1, DTSG(G, La,R) = {0} and § C m'. Also, we have
R ¢ m/. Otherwise, R is unlocked by Sy and {R} € DTSG(G, L4, R). {R} C m'.

DTSG(G, L4, R) contains all the minimal sets m of local policies and unlocked credentials such
that view(Sq U m) has at least one evolvable tree for Pg. Since DT'SG A f, view(Sq Um') has no
evolvable tree for Pg. Thus, after sending m', DT'SG at Pg will send a failure message and end the
negotiation. However, since R is not unsolvable regarding S, there is a minimal solution set to R
which contains no unsolvable credentials regarding S.. Therefore, if all the credentials are actually
freely available, then there exists a sequence of credential disclosures leading to the disclosure of
R, which means f and DTSG are not compatible, leading to a contradiction. J

B An Example of Trust Negotiation

Consider an online medical records service that allows patients to access their electronic medical
records from Busey Hospital over the web. In our example, a parent wants to access her child’s
medical records at the online service. The policies of the parent and the online service are shown
in figure 9. Table 1 gives the interpretations of the credentials appearing in figure 9.

This example fits most naturally into a simple first-order policy language, such as a datalog
program. To be in keeping with the rest of this paper, we have fitted the example into a propo-
sitional format. This hides much of the example’s natural complexity behind the translation of
credentials to propositional symbols. In particular, several of the individual propositional symbols
(S2,83,C2,C3,Cs and Cs) in table 1 are best represented by credential chains, where the issuer
of one credential is the owner of the next credential in the chain. For example, a birth certifi-
cate is issued by a county clerk, who is certified by her county to act as a county clerk. In turn,
each county is certified by the state, possession, or territory in which it is located. In turn, the
states/possessions/territories are certified by the Federal government, which is at the top of this
particular set of credential chains. Similarly, the distinction between an adult’s and a child’s birth
certificates is most easily expressed in a first-order policy language.

Further, authentication of the requester to one of the principals mentioned in the credentials is
a key aspect of many of the policies in figure 9, but is not included in this propositional format.
For example, in the policy R « (C1 AC2) V (C7 A (C3 V Cs V Cg)) V Cy, to satisfy the first clause
of the policy, the requester must authenticate to the owner of C; and Cs, and the owner of C)
must be the patient whose records are being requested. To satisfy the second clause, the requester

125



must authenticate to one of the parents in the child’s birth certificate, or the guardian in the
guardian credential, or one of the parents in the adoption credential. Further, the child named in
the adoption/guardianship/birth certificate must be the owner of the child patient ID, and must
be the patient whose records have been requested. To satisfy the third clause, the requester must
authenticate to the owner of the employee ID.

The Parent’s Policies
C1 + S7V Sg V(541 82)
Co « (S3AS1)V Ss
C3 « (S3AS1)VSs
Cr « S7V Ss V(5S4 A S2)
Cg « true

=il
L

The Online Medical Records Service’s Policies
R+ (C1 ACQ)V(C7 A (C3VCs5VCe))VCy
S1 « true
S2 + Csg
S3 < true

S4 « true

Figure 9: An example of access control policies and a safe disclosure sequence.

Credential | Interpretation

R patient’s medical records from Busey Hospital, stored
at the Online Medical Records Service
S1 membership credential issued by TrustE
So mailing address certificate issued by the US Post
Office, showing an address in Illinois
S3 accreditation credential issued by the US Government
to medical facilities
Sy affiliate organization credential issued by Busey Hospital
Ss US Government agency credential issued by the US Government
Ss employee ID issued by Blue Cross Blue Shield of Illinois
S7 employee ID issued by Busey Hospital
& adult patient ID credential issued by Busey Hospital
C adult’s birth certificate {age over 21)
Cs child’s birth certificate {age under 21)
Cy employee 1D issued by Busey Hospital to a medical practitioner
Cs legal guardianship credential issued by a state court
Cs adoption credential issued by a state court
Cy child patient ID credential issued by Busey Hospital
Cy membership credential issued by the Reduce Junk Mail Alliance

Table 1: Interpretations of credentials appearing in figure 9.

126





